Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS Genet ; 19(2): e1010653, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36795790

RESUMEN

Animal traits develop through the expression and action of numerous regulatory and realizator genes that comprise a gene regulatory network (GRN). For each GRN, its underlying patterns of gene expression are controlled by cis-regulatory elements (CREs) that bind activating and repressing transcription factors. These interactions drive cell-type and developmental stage-specific transcriptional activation or repression. Most GRNs remain incompletely mapped, and a major barrier to this daunting task is CRE identification. Here, we used an in silico method to identify predicted CREs (pCREs) that comprise the GRN which governs sex-specific pigmentation of Drosophila melanogaster. Through in vivo assays, we demonstrate that many pCREs activate expression in the correct cell-type and developmental stage. We employed genome editing to demonstrate that two CREs control the pupal abdomen expression of trithorax, whose function is required for the dimorphic phenotype. Surprisingly, trithorax had no detectable effect on this GRN's key trans-regulators, but shapes the sex-specific expression of two realizator genes. Comparison of sequences orthologous to these CREs supports an evolutionary scenario where these trithorax CREs predated the origin of the dimorphic trait. Collectively, this study demonstrates how in silico approaches can shed novel insights on the GRN basis for a trait's development and evolution.


Asunto(s)
Drosophila melanogaster , Redes Reguladoras de Genes , Animales , Masculino , Femenino , Drosophila melanogaster/genética , Drosophila/genética , Factores de Transcripción/genética , Pigmentación/genética
2.
J Exp Zool B Mol Dev Evol ; 340(2): 143-161, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-34254440

RESUMEN

Changes in gene expression are a prominent feature of morphological evolution. These changes occur to hierarchical gene regulatory networks (GRNs) of transcription factor genes that regulate the expression of trait-building differentiation genes. While changes in the expression of differentiation genes are essential to phenotypic evolution, they can be caused by mutations within cis-regulatory elements (CREs) that drive their expression (cis-evolution) or within genes for CRE-interacting transcription factors (trans-evolution). Locating these mutations remains a challenge, especially when experiments are limited to one species that possesses the ancestral or derived phenotype. We investigated CREs that control the expression of the differentiation genes tan and yellow, the expression of which evolved during the gain, modification, and loss of dimorphic pigmentation among Sophophora fruit flies. We show these CREs to be necessary components of a pigmentation GRN, as deletion from Drosophila melanogaster (derived dimorphic phenotype) resulted in lost expression and lost male-specific pigmentation. We evaluated the ability of orthologous CRE sequences to drive reporter gene expression in species with modified (Drosophila auraria), secondarily lost (Drosophila ananassae), and ancestrally absent (Drosophila willistoni) pigmentation. We show that the transgene host frequently determines CRE activity, implicating trans-evolution as a significant factor for this trait's diversity. We validated the gain of dimorphic Bab transcription factor expression as a trans-change contributing to the dimorphic trait. Our findings suggest an amenability to change for the landscape of trans-regulators and begs for an explanation as to why this is so common compared to the evolution of differentiation gene CREs.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Masculino , Animales , Drosophila melanogaster/genética , Proteínas de Drosophila/genética , Drosophila/genética , Drosophila/metabolismo , Factores de Transcripción/genética , Pigmentación/genética , Fenotipo , Evolución Molecular
3.
Dev Biol ; 441(1): 159-175, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29981311

RESUMEN

A challenge for evolutionary research is to uncover how new morphological traits evolve the coordinated spatial and temporal expression patterns of genes that govern their formation during development. Detailed studies are often limited to characterizing how one or a few genes contributed to a trait's emergence, and thus our knowledge of how entire GRNs evolve their coordinated expression of each gene remains unresolved. The melanic color patterns decorating the male abdominal tergites of Drosophila (D.) melanogaster evolved in part by novel expression patterns for genes acting at the terminus of a pigment metabolic pathway, driven by cis-regulatory elements (CREs) with distinct mechanisms of Hox regulation. Here, we examined the expression and evolutionary histories of two important enzymes in this pathway, encoded by the pale and Ddc genes. We found that while both genes exhibit dynamic patterns of expression, a robust pattern of Ddc expression specifically evolved in the lineage of fruit flies with pronounced melanic abdomens. Derived Ddc expression requires the activity of a CRE previously shown to activate expression in response to epidermal wounding. We show that a binding site for the Grainy head transcription factor that promotes the ancestral wound healing function of this CRE is also required for abdominal activity. Together with previous findings in this system, our work shows how the GRN for a novel trait emerged by assembling unique yet similarly functioning CREs from heterogeneous starting points.


Asunto(s)
Proteínas de Drosophila/metabolismo , Factores de Transcripción GATA/metabolismo , Pigmentación/fisiología , Carácter Cuantitativo Heredable , Elementos de Respuesta/fisiología , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster , Factores de Transcripción GATA/genética
4.
Dev Biol ; 297(2): 493-507, 2006 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-16806154

RESUMEN

Posterior prevalence is the general property attributed to HOX proteins describing the dominant effect of more posterior HOX proteins over the function of anterior orthologs in common areas of expression. To explore the HOX group 13 protein domains required for this property, we used the mouse Prx-1 promoter to drive transgenic expression of Hox constructs throughout the entire limb bud during development. This system allowed us to conclusively demonstrate a hierarchy of Hox function in developing limbs. Furthermore, by substituting the HOXD11 or HOXA9 homeodomain for that of HOXD13, we show that a HOXD13 homeodomain is not necessary for posterior prevalence. Proximal expression of these chimeric proteins unexpectedly caused defects consistent with wild-type HOXD13 mediated posterior prevalence. Moreover, group 13 non-homeodomain residues appear to confer the property as proximal expression of HOXA9 containing the HOXD13 homeodomain did not result in limb reductions characteristic of HOXD13. These data are most compatible with models of posterior prevalence based on protein-protein interactions and support examination of the N-terminal non-homeodomain regions of Hox group 13 proteins as necessary agents for posterior prevalence.


Asunto(s)
Extremidades/embriología , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/fisiología , Factores de Transcripción/fisiología , Animales , Femenino , Proteínas de Homeodominio/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Mutación , Fenotipo , Estructura Terciaria de Proteína , Factores de Transcripción/metabolismo , Transgenes
5.
Nucleic Acids Res ; 33(14): 4475-84, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-16087734

RESUMEN

Interactions with co-factors provide a means by which HOX proteins exert specificity. To identify candidate protein interactors of HOXA13, we created and screened an E11.5-E12.5, distal limb bud yeast two-hybrid prey library. Among the interactors, we isolated the BMP-signaling effector Smad5, which interacted with the paralogous HOXD13 but not with HOXA11 or HOXA9, revealing unique interaction capabilities of the AbdB-like HOX proteins. Using deletion mutants, we determined that the MH2 domain of Smad5 is necessary for HOXA13 interaction. This is the first report demonstrating an interaction between HOX proteins and the MH2 domain of Smad proteins. HOXA13 and HOXD13 also bind to other BMP and TGF-beta/Activin-regulated Smad proteins including Smad1 and Smad2, but not Smad4. Furthermore, HOXD13 could be co-immunoprecipitated with Smad1 from cells. Expression of HOXA13, HOXD13 or a HOXD13 homeodomain mutant (HOXD13(IQN>AAA)) antagonized TGF-beta-stimulated transcriptional activation of the pAdtrack-3TP-Lux reporter vector in Mv1Lu cells as well as the Smad3/Smad4-activated pTRS6-E1b promoter in Hep3B cells. Finally, using mammalian one-hybrid assay, we show that transcriptional activation by a GAL4/Smad3-C-terminus fusion protein is specifically inhibited by HOXA13. Our results identify a new co-factor for HOX group 13 proteins and suggest that HOX proteins may modulate Smad-mediated transcriptional activity through protein-protein interactions without the requirement for HOX monomeric DNA-binding capability.


Asunto(s)
Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Proteínas de Homeodominio/metabolismo , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Transactivadores/química , Transactivadores/metabolismo , Activación Transcripcional , Animales , Proteínas Morfogenéticas Óseas/fisiología , Línea Celular , Proteínas de Unión al ADN/antagonistas & inhibidores , Extremidades/embriología , Biblioteca de Genes , Humanos , Ratones , Ratones Endogámicos C57BL , Estructura Terciaria de Proteína , Proteínas Smad , Proteína Smad1 , Proteína smad3 , Proteína Smad5 , Transactivadores/antagonistas & inhibidores , Factores de Transcripción/metabolismo , Factor de Crecimiento Transformador beta/antagonistas & inhibidores , Factor de Crecimiento Transformador beta1 , Técnicas del Sistema de Dos Híbridos
6.
Dev Biol ; 279(2): 462-80, 2005 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-15733672

RESUMEN

Hox genes encode transcription factors that regulate the morphogenesis of developing embryos. In mammals, knowledge of the genetic pathways, including the possible direct or indirect targets, regulated by HOX proteins is extremely limited. To identify the downstream genes regulated by posterior HOX proteins, we expressed HOXA13 in mouse embryonic fibroblasts lacking paralog group 13 expression using a bicistronic HOXA13/EGFP retroviral vector. Microarray analysis identified 68 genes with significant, reproducible RNA expression changes (50 activated; 18 repressed) in stable HOXA13-expressing cells. Genes with the GO annotation terms "extracellular matrix" and "basement membrane" were greatly overrepresented, and several were shown to be regulated by HOX proteins in other studies. Among the genes strongly activated by HOXA13 were Enpp2, a bifunctional enzyme known to modulate tumor and normal cell motility and which is expressed in precartilaginous condensations; Fhl1, a transcription factor implicated in muscle cell differentiation and development; and M32486, a putative integral membrane molecule expressed in the female reproductive tract. Expression differences in the HOXA13-expressing cells were confirmed for selected downstream genes using semi-quantitative RT-PCR, and in vivo coexpression with Hoxa13 in the limb interdigital mesenchyme was demonstrated for many. For two candidates, Igfbp4 and Fstl, interdigital limb bud expression was reduced in Hoxa13 mutants. To explore whether paralogous and nonparalogous HOX proteins could regulate the same genes, we created new HOX cell lines and examined the expression of selected genes identified by the HOXA13 screen. HOXD13 similarly activated/repressed 6 tested candidates, demonstrating that multiple downstream genetic pathways may be regulated by paralog HOX proteins. In contrast, HOXA9 was only able to repress expression of some gene targets. A HOXD13 mutant, HOXD13(IQN >)(AAA), incapable of monomeric DNA-binding, activated the expression of 5 HOXA13-upregulated genes; but was incapable of repressing the expression of Ngef and Casp8ap2. Our results suggest that HOX protein-protein interactions without direct HOX DNA-binding may play a larger role in HOX transcriptional regulation than generally assumed, and DNA-binding appears critical for repression.


Asunto(s)
ADN/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Animales , Extremidades/anatomía & histología , Extremidades/embriología , Extremidades/fisiología , Femenino , Perfilación de la Expresión Génica , Vectores Genéticos/genética , Vectores Genéticos/metabolismo , Proteínas de Homeodominio/genética , Hibridación in Situ , Ratones , Ratones Noqueados , Células 3T3 NIH , Análisis de Secuencia por Matrices de Oligonucleótidos , Unión Proteica , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Reproducibilidad de los Resultados
7.
Dev Biol ; 277(2): 457-71, 2005 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-15617687

RESUMEN

AbdB-like HOX proteins form DNA-binding complexes with the TALE superclass proteins MEIS1A and MEIS1B, and trimeric complexes have been identified in nuclear extracts that include a second TALE protein, PBX. Thus, soluble DNA-independent protein-protein complexes exist in mammals. The extent of HOX/TALE superclass interactions, protein structural requirements, and sites of in vivo cooperative interaction have not been fully explored. We show that Hoxa13 and Hoxd13 expression does not overlap with that of Meis1-3 in the developing limb; however, coexpression occurs in the developing male and female reproductive tracts (FRTs). We demonstrate that both HOXA13 and HOXD13 associate with MEIS1B in mammalian and yeast cells, and that HOXA13 can interact with all MEIS proteins but not more diverged TALE superclass members. In addition, the C-terminal domains (CTDs) of MEIS1A (18 amino acids) and MEIS1B (93 amino acids) are necessary for HOXA13 interaction; for MEIS1B, this domain was also sufficient. We also show by yeast two-hybrid assay that MEIS proteins can interact with anterior HOX proteins, but for some, additional N-terminal MEIS sequences are required for interaction. Using deletion mutants of HOXA13 and HOXD13, we provide evidence for multiple HOX peptide domains interacting with MEIS proteins. These data suggest that HOX:MEIS interactions may extend to non-AbdB-like HOX proteins in solution and that differences may exist in the MEIS peptide domains utilized by different HOX groups. Finally, the capability of multiple HOX domains to interact with MEIS C-terminal sequences implies greater complexity of the HOX:MEIS protein-protein interactions and a larger role for variation of HOX amino-terminal sequences in specificity of function.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Ratones/embriología , Ratones/metabolismo , Proteínas Represoras/metabolismo , Secuencia de Aminoácidos , Animales , Análisis por Conglomerados , Cartilla de ADN , Extremidades/embriología , Femenino , Genitales Femeninos/metabolismo , Inmunohistoquímica , Inmunoprecipitación , Hibridación in Situ , Masculino , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide , Células 3T3 NIH , Proteínas de Neoplasias/metabolismo , Unión Proteica/genética , Estructura Terciaria de Proteína/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Alineación de Secuencia , Factores de Transcripción/metabolismo , Técnicas del Sistema de Dos Híbridos
8.
Evol Dev ; 6(6): 423-30, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15509224

RESUMEN

The posterior HoxA and HoxD genes are essential in appendicular development. Studies have demonstrated that a "distal limb enhancer," remotely located upstream of the HoxD complex, is required to drive embryonic autopod expression of the posterior Hox genes as well as the two additional non-Hox genes in the region: Evx2 and Lnp. Our work demonstrates a similar mode of regulation for Hoxa13 and four upstream genes: Evx1, Hibadh, Tax1bp, and Jaz1. These genes all show embryonic (E11.5-E13.5) distal limb and genital bud expression, suggesting the existence of a nearby enhancer influencing the expression of a domain of genes. Comparative sequence analysis between homologous human and mouse genomic sequence upstream of Hoxa13 revealed a remote 2.25-kb conserved noncoding sequence (mmA13CNS) within the fourth intron of the Hibadh gene. mmA13CNS shares a common 131-bp core identity within a conserved noncoding sequence upstream of Hoxd13, which is located within the previously identified distal limb enhancer critical region. To test the function of this conserved sequence, we created mmA13CNS-Hsp86-lacZ transgenic mice. mmA13CNS directed a wide range of tissue expression, including the central nervous system, developing olfactory tissue, limb, and genital bud. Limb and genital bud expression directed by mmA13CNS is not identical to the patterns exhibited by Hoxa13/Evx1/Hibadh/Tax1bp1/Jaz1, suggesting that mmA13CNS is not sufficient to fully recapitulate their expression in those tissues. The Evx1- and Evx2-like central nervous system expression observed in these mice suggests that the long-range regulatory element(s) for the Hox cluster existed before the cluster duplication.


Asunto(s)
Tipificación del Cuerpo/genética , Elementos de Facilitación Genéticos/genética , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas de Homeodominio/genética , Familia de Multigenes , Transactivadores/genética , Animales , Tipificación del Cuerpo/fisiología , Evolución Molecular , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas de Homeodominio/biosíntesis , Humanos , Intrones/genética , Ratones , Ratones Transgénicos , Transactivadores/biosíntesis
9.
Hum Mol Genet ; 13(22): 2841-51, 2004 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-15385446

RESUMEN

Polyalanine expansions in two of three large imperfect trinucleotide repeats encoded by the first exon of HOXA13 have been reported in hand-foot-genital syndrome (HFGS). Here we report additional families with expansions in the third repeat of 11 and 12 alanine residues, the latter being the largest expansion reported. We also report a patient with a novel, de novo 8-alanine expansion in the first large repeat. Thus, expansions in all three large HOXA13 polyalanine repeats can cause HFGS. To determine the molecular basis for impaired HOXA13 function, we performed homologous recombination in ES cells in mice to expand the size of the third largest polyalanine tract by 10 residues (HOXA13(ALA28)). Mutant mice were indistinguishable from Hoxa13 null mice. Mutant limb buds had normal steady-state Hoxa13 RNA expression, normal mRNA splicing and reduced levels of steady-state protein. In vitro translation efficiency of the HOXA13(ALA28) protein was normal. Thus, loss of function is secondary to a reduction in the in vivo abundance of the expanded protein likely due to degradation.


Asunto(s)
Deformidades Congénitas del Pie/genética , Deformidades Congénitas de la Mano/genética , Proteínas de Homeodominio/genética , Péptidos/genética , Animales , Secuencia de Bases , Embrión de Mamíferos/citología , Femenino , Proteínas de Homeodominio/metabolismo , Humanos , Masculino , Ratones , Ratones Mutantes , Datos de Secuencia Molecular , Linaje , Biosíntesis de Proteínas , Desnaturalización Proteica , Empalme del ARN , ARN Mensajero/genética , Recombinación Genética , Células Madre/citología , Células Madre/metabolismo , Síndrome , Repeticiones de Trinucleótidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...