Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 307
Filtrar
1.
bioRxiv ; 2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38586051

RESUMEN

We have combined MR histology and light sheet microscopy (LSM) of five postmortem C57BL/6J mouse brains in a stereotaxic space based on micro-CT yielding a multimodal 3D atlas with the highest spatial and contrast resolution yet reported. Brains were imaged in situ with multi gradient echo (mGRE) and diffusion tensor imaging (DTI) at 15 µm resolution (∼ 2.4 million times that of clinical MRI). Scalar images derived from the average DTI and mGRE provide unprecedented contrast in 14 complementary 3D volumes, each highlighting distinct histologic features. The same tissues scanned with LSM and registered into the stereotaxic space provide 17 different molecular cell type stains. The common coordinate framework labels (CCFv3) complete the multimodal atlas. The atlas has been used to correct distortions in the Allen Brain Atlas and harmonize it with Franklin Paxinos. It provides a unique resource for stereotaxic labeling of mouse brain images from many sources.

2.
Cell Genom ; 4(4): 100527, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38537634

RESUMEN

The seventh iteration of the reference genome assembly for Rattus norvegicus-mRatBN7.2-corrects numerous misplaced segments and reduces base-level errors by approximately 9-fold and increases contiguity by 290-fold compared with its predecessor. Gene annotations are now more complete, improving the mapping precision of genomic, transcriptomic, and proteomics datasets. We jointly analyzed 163 short-read whole-genome sequencing datasets representing 120 laboratory rat strains and substrains using mRatBN7.2. We defined ∼20.0 million sequence variations, of which 18,700 are predicted to potentially impact the function of 6,677 genes. We also generated a new rat genetic map from 1,893 heterogeneous stock rats and annotated transcription start sites and alternative polyadenylation sites. The mRatBN7.2 assembly, along with the extensive analysis of genomic variations among rat strains, enhances our understanding of the rat genome, providing researchers with an expanded resource for studies involving rats.


Asunto(s)
Genoma , Genómica , Ratas , Animales , Genoma/genética , Anotación de Secuencia Molecular , Secuenciación Completa del Genoma , Variación Genética/genética
3.
bioRxiv ; 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38464110

RESUMEN

Drug addiction is a multifactorial syndrome in which genetic predispositions and exposure to environmental stressors constitute major risk factors for the early onset, escalation, and relapse of addictive behaviors. While it is well known that stress plays a key role in drug addiction, the genetic factors that make certain individuals particularly sensitive to stress and thereby more vulnerable to becoming addicted are unknown. In an effort to test a complex set of gene x environment interactions-specifically gene x chronic stress -here we leveraged a systems genetics resource: BXD recombinant inbred mice (BXD5, BXD8, BXD14, BXD22, BXD29, and BXD32) and their parental mouse lines, C57BL/6J and DBA/2J. Utilizing the chronic social defeat stress (CSDS) and chronic variable stress (CVS) paradigms, we first showed sexual dimorphism in the behavioral stress response between the mouse strains. Further, we observed an interaction between genetic background and vulnerability to prolonged exposure to non-social stressors. Finally, we found that DBA/2J and C57BL/6J mice pre-exposed to stress displayed differences in morphine sensitivity. Our results support the hypothesis that genetic variation in predisposition to stress responses influences morphine sensitivity and is likely to modulate the development of drug addiction.

4.
bioRxiv ; 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38260597

RESUMEN

The HXB/BXH family of recombinant inbred rat strains is a unique genetic resource that has been extensively phenotyped over 25 years, resulting in a vast dataset of quantitative molecular and physiological phenotypes. We built a pangenome graph from 10x Genomics Linked-Read data for 31 recombinant inbred rats to study genetic variation and association mapping. The pangenome includes 0.2Gb of sequence that is not present the reference mRatBN7.2, confirming the capture of substantial additional variation. We validated variants in challenging regions, including complex structural variants resolving into multiple haplotypes. Phenome-wide association analysis of validated SNPs uncovered variants associated with glucose/insulin levels and hippocampal gene expression. We propose an interaction between Pirl1l1, chromogranin expression, TNF-α levels, and insulin regulation. This study demonstrates the utility of linked-read pangenomes for comprehensive variant detection and mapping phenotypic diversity in a widely used rat genetic reference panel.

6.
Genome Res ; 34(1): 145-159, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38290977

RESUMEN

Hundreds of inbred mouse strains and intercross populations have been used to characterize the function of genetic variants that contribute to disease. Thousands of disease-relevant traits have been characterized in mice and made publicly available. New strains and populations including consomics, the collaborative cross, expanded BXD, and inbred wild-derived strains add to existing complex disease mouse models, mapping populations, and sensitized backgrounds for engineered mutations. The genome sequences of inbred strains, along with dense genotypes from others, enable integrated analysis of trait-variant associations across populations, but these analyses are hampered by the sparsity of genotypes available. Moreover, the data are not readily interoperable with other resources. To address these limitations, we created a uniformly dense variant resource by harmonizing multiple data sets. Missing genotypes were imputed using the Viterbi algorithm with a data-driven technique that incorporates local phylogenetic information, an approach that is extendable to other model organisms. The result is a web- and programmatically accessible data service called GenomeMUSter, comprising single-nucleotide variants covering 657 strains at 106.8 million segregating sites. Interoperation with phenotype databases, analytic tools, and other resources enable a wealth of applications, including multitrait, multipopulation meta-analysis. We show this in cross-species comparisons of type 2 diabetes and substance use disorder meta-analyses, leveraging mouse data to characterize the likely role of human variant effects in disease. Other applications include refinement of mapped loci and prioritization of strain backgrounds for disease modeling to further unlock extant mouse diversity for genetic and genomic studies in health and disease.


Asunto(s)
Diabetes Mellitus Tipo 2 , Humanos , Ratones , Animales , Filogenia , Genotipo , Ratones Endogámicos , Fenotipo , Mutación , Variación Genética
7.
Clin Immunol ; 257: 109842, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37981105

RESUMEN

Cardinal features of lupus include elevated B cell activation and autoantibody production with a female sex preponderance. We quantified interactions of sex and genetic variation on the development of autoimmune B-cell phenotypes and autoantibodies in the BXD2 murine model of lupus using a cohort of backcrossed progeny (BXD2 x C57BL/6J) x BXD2. Sex was the key factor leading to increased total IgG, IgG2b, and autoantibodies. The percentage of T-bet+CD11c+ IgD+ activated naive B cells (aNAV) was higher in females and was associated with increased T-bet+CD11c+ IgD- age-related B cells, Fas+GL7+ germinal center B cells, Cxcr5-Icos+ peripheral T-helper cells, and Cxcr5+Icos+ follicular T-helper cells. IFN-ß was elevated in females. Variation in aNAV cells was mapped to Chr 7 in a locus that shows significant interactions between the female sex and heterozygous B/D variant. Our results suggest that activation of naive B cells forms the basis for the female-predominant development of autoantibodies in lupus-susceptible BXD2 mice.


Asunto(s)
Linfocitos B , Lupus Eritematoso Sistémico , Animales , Femenino , Humanos , Masculino , Ratones , Autoanticuerpos , Cruzamientos Genéticos , Centro Germinal , Lupus Eritematoso Sistémico/genética , Ratones Endogámicos C57BL , Linfocitos T Colaboradores-Inductores , Caracteres Sexuales
8.
Front Neurosci ; 17: 1223226, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37841684

RESUMEN

Information on regional variation in cell numbers and densities in the CNS provides critical insight into structure, function, and the progression of CNS diseases. However, variability can be real or a consequence of methods that do not account for technical biases, including morphologic deformations, errors in the application of cell type labels and boundaries of regions, errors of counting rules and sampling sites. We address these issues in a mouse model by introducing a workflow that consists of the following steps: 1. Magnetic resonance histology (MRH) to establish the size, shape, and regional morphology of the mouse brain in situ. 2. Light-sheet microscopy (LSM) to selectively label neurons or other cells in the entire brain without sectioning artifacts. 3. Register LSM volumes to MRH volumes to correct for dissection errors and both global and regional deformations. 4. Implement stereological protocols for automated sampling and counting of cells in 3D LSM volumes. This workflow can analyze the cell densities of one brain region in less than 1 min and is highly replicable in cortical and subcortical gray matter regions and structures throughout the brain. This method demonstrates the advantage of not requiring an extensive amount of training data, achieving a F1 score of approximately 0.9 with just 20 training nuclei. We report deformation-corrected neuron (NeuN) counts and neuronal density in 13 representative regions in 5 C57BL/6J cases and 2 BXD strains. The data represent the variability among specimens for the same brain region and across regions within the specimen. Neuronal densities estimated with our workflow are within the range of values in previous classical stereological studies. We demonstrate the application of our workflow to a mouse model of aging. This workflow improves the accuracy of neuron counting and the assessment of neuronal density on a region-by-region basis, with broad applications for studies of how genetics, environment, and development across the lifespan impact cell numbers in the CNS.

9.
bioRxiv ; 2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37609331

RESUMEN

Hundreds of inbred laboratory mouse strains and intercross populations have been used to functionalize genetic variants that contribute to disease. Thousands of disease relevant traits have been characterized in mice and made publicly available. New strains and populations including the Collaborative Cross, expanded BXD and inbred wild-derived strains add to set of complex disease mouse models, genetic mapping resources and sensitized backgrounds against which to evaluate engineered mutations. The genome sequences of many inbred strains, along with dense genotypes from others could allow integrated analysis of trait - variant associations across populations, but these analyses are not feasible due to the sparsity of genotypes available. Moreover, the data are not readily interoperable with other resources. To address these limitations, we created a uniformly dense data resource by harmonizing multiple variant datasets. Missing genotypes were imputed using the Viterbi algorithm with a data-driven technique that incorporates local phylogenetic information, an approach that is extensible to other model organism species. The result is a web- and programmatically-accessible data service called GenomeMUSter ( https://muster.jax.org ), comprising allelic data covering 657 strains at 106.8M segregating sites. Interoperation with phenotype databases, analytic tools and other resources enable a wealth of applications including multi-trait, multi-population meta-analysis. We demonstrate this in a cross-species comparison of the meta-analysis of Type 2 Diabetes and of substance use disorders, resulting in the more specific characterization of the role of human variant effects in light of mouse phenotype data. Other applications include refinement of mapped loci and prioritization of strain backgrounds for disease modeling to further unlock extant mouse diversity for genetic and genomic studies in health and disease.

10.
Cell Rep ; 42(8): 112889, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37527036

RESUMEN

Microglia shift toward an inflammatory phenotype during aging that is thought to exacerbate age-related neurodegeneration. The molecular and cellular signals that resolve neuroinflammation post-injury are largely undefined. Here, we exploit systems genetics methods based on the extended BXD murine reference family and identify IGFBPL1 as an upstream cis-regulator of microglia-specific genes to switch off inflammation. IGFBPL1 is expressed by mouse and human microglia, and higher levels of its expression resolve lipopolysaccharide-induced neuroinflammation by resetting the transcriptome signature back to a homeostatic state via IGF1R signaling. Conversely, IGFBPL1 deficiency or selective deletion of IGF1R in microglia shifts these cells to an inflammatory landscape and induces early manifestation of brain tauopathy and retinal neurodegeneration. Therapeutic administration of IGFBPL1 drives pro-homeostatic microglia and prevents glaucomatous neurodegeneration and vision loss in mice. These results identify IGFBPL1 as a master driver of the counter-inflammatory microglial modulator that presents an endogenous resolution of neuroinflammation to prevent neurodegeneration in eye and brain.


Asunto(s)
Microglía , Tauopatías , Ratones , Animales , Humanos , Microglía/metabolismo , Enfermedades Neuroinflamatorias , Tauopatías/metabolismo , Inflamación/metabolismo , Encéfalo/metabolismo , Homeostasis , Proteínas de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Proteínas Supresoras de Tumor/metabolismo
11.
Genes Brain Behav ; 22(6): e12859, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37553802

RESUMEN

Developmental Coordination Disorder (DCD) is a neurodevelopmental disorder of unknown etiology that affects one in 20 children. There is an indication that DCD has an underlying genetic component due to its high heritability. Therefore, we explored the use of a recombinant inbred family of mice known as the BXD panel to understand the genetic basis of complex traits (i.e., motor learning) through identification of quantitative trait loci (QTLs). The overall aim of this study was to utilize the QTL approach to evaluate the genome-to-phenome correlation in BXD strains of mice in order to better understand the human presentation of DCD. Results of this current study confirm differences in motor learning in selected BXD strains and strains with altered cerebellar volume. Five strains - BXD15, BXD27, BXD28, BXD75, and BXD86 - exhibited the most DCD-like phenotype when compared with other BXD strains of interest. Results indicate that BXD15 and BXD75 struggled primarily with gross motor skills, BXD28 primarily had difficulties with fine motor skills, and BXD27 and BXD86 strains struggled with both fine and gross motor skills. The functional roles of genes within significant QTLs were assessed in relation to DCD-like behavior. Only Rab3a (Ras-related protein Rab-3A) emerged as a high likelihood candidate gene for the horizontal ladder rung task. This gene is associated with brain and skeletal muscle development, but lacked nonsynonymous polymorphisms. This study along with Gill et al. (same issue) is the first studies to specifically examine the genetic linkage of DCD using BXD strains of mice.


Asunto(s)
Trastornos de la Destreza Motora , Sitios de Carácter Cuantitativo , Niño , Ratones , Humanos , Animales , Trastornos de la Destreza Motora/genética , Encéfalo , Fenotipo
12.
G3 (Bethesda) ; 13(9)2023 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-37405387

RESUMEN

Genetic differences among mammalian hosts and among strains of Mycobacterium tuberculosis (Mtb) are well-established determinants of tuberculosis (TB) patient outcomes. The advent of recombinant inbred mouse panels and next-generation transposon mutagenesis and sequencing approaches has enabled dissection of complex host-pathogen interactions. To identify host and pathogen genetic determinants of Mtb pathogenesis, we infected members of the highly diverse BXD family of strains with a comprehensive library of Mtb transposon mutants (TnSeq). Members of the BXD family segregate for Mtb-resistant C57BL/6J (B6 or B) and Mtb-susceptible DBA/2J (D2 or D) haplotypes. The survival of each bacterial mutant was quantified within each BXD host, and we identified those bacterial genes that were differentially required for Mtb fitness across BXD genotypes. Mutants that varied in survival among the host family of strains were leveraged as reporters of "endophenotypes," each bacterial fitness profile directly probing specific components of the infection microenvironment. We conducted quantitative trait loci (QTL) mapping of these bacterial fitness endophenotypes and identified 140 host-pathogen QTL (hpQTL). We located a QTL hotspot on chromosome 6 (75.97-88.58 Mb) associated with the genetic requirement of multiple Mtb genes: Rv0127 (mak), Rv0359 (rip2), Rv0955 (perM), and Rv3849 (espR). Together, this screen reinforces the utility of bacterial mutant libraries as precise reporters of the host immunological microenvironment during infection and highlights specific host-pathogen genetic interactions for further investigation. To enable downstream follow-up for both bacterial and mammalian genetic research communities, all bacterial fitness profiles have been deposited into GeneNetwork.org and added into the comprehensive collection of TnSeq libraries in MtbTnDB.


Asunto(s)
Mycobacterium tuberculosis , Ratones , Animales , Mycobacterium tuberculosis/genética , Ratones Endogámicos DBA , Ratones Endogámicos C57BL , Sitios de Carácter Cuantitativo , Mutagénesis , Mamíferos/genética
13.
Adv Exp Med Biol ; 1415: 371-376, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37440059

RESUMEN

The field of retinal degenerative (RDs) disease study has been in a state of exponential growth from discovering the underlying genetic components of such diseases as age-related macular degeneration (AMD) and retinitis pigmentosa (RP) to the first gene therapy developed and approved for human Leber congenital amaurosis. However, a source for high-fidelity animal models of these complex, multifactorial, and/or polygenic diseases is a need that has yet to be fulfilled. While models for AMD and RP do exist, they often require aging the animals for a year or more, feeding special diets, or introduction of external modulators such as exposure to cigarette smoke. Currently, work is being done to uncover high-fidelity naturally occurring models of these retinal diseases with the hope and intent of providing the vision community the tools it needs to better understand, treat, and, one day, cure the patients suffering from these devastating afflictions.


Asunto(s)
Degeneración Macular , Degeneración Retiniana , Retinitis Pigmentosa , Ratones , Animales , Humanos , Degeneración Retiniana/terapia , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/terapia , Degeneración Macular/genética , Degeneración Macular/terapia , Modelos Animales de Enfermedad , Visión Ocular
14.
bioRxiv ; 2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37292796

RESUMEN

Information on regional variation in cell numbers and densities in the CNS provides critical insight into structure, function, and the progression of CNS diseases. However, variability can be real or can be a consequence of methods that do not account for technical biases, including morphologic deformations, errors in the application of cell type labels and boundaries of regions, errors of counting rules and sampling sites. We address these issues of by introducing a workflow that consists of the following steps: 1. Magnetic resonance histology (MRH) to establish the size, shape, and regional morphology of the mouse brain in situ. 2. Light-sheet microscopy (LSM) to selectively label all neurons or other cells in the entire brain without sectioning artifacts. 3. Register LSM volumes to MRH volumes to correct for dissection errors and morphological deformations. 4. Implement novel protocol for automated sampling and counting of cells in 3D LSM volumes. This workflow can analyze the cells density of one brain region in less than 1 min and is highly replicable to cortical and subcortical gray matter regions and structures throughout the brain. We report deformation-corrected neuron (NeuN) counts and neuronal density in 13 representative regions in 5 C57B6/6J and 2 BXD strains. The data represent the variability among cases for the same brain region and across regions within case. Our data are consistent with previous studies. We demonstrate the application of our workflow to a mouse model of aging. This workflow improves the accuracy of neuron counting and the assessment of neuronal density on a region-by-region basis, with broad applications in how genetics, environment, and development across the lifespan impact brain structure.

15.
IEEE/ACM Trans Comput Biol Bioinform ; 20(5): 2837-2852, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37294649

RESUMEN

Single-cell RNA sequencing (scRNA-seq) provides a high throughput, quantitative and unbiased framework for scientists in many research fields to identify and characterize cell types within heterogeneous cell populations from various tissues. However, scRNA-seq based identification of discrete cell-types is still labor intensive and depends on prior molecular knowledge. Artificial intelligence has provided faster, more accurate, and user-friendly approaches for cell-type identification. In this review, we discuss recent advances in cell-type identification methods using artificial intelligence techniques based on single-cell and single-nucleus RNA sequencing data in vision science. The main purpose of this review paper is to assist vision scientists not only to select suitable datasets for their problems, but also to be aware of the appropriate computational tools to perform their analysis. Developing novel methods for scRNA-seq data analysis remains to be addressed in future studies.


Asunto(s)
Inteligencia Artificial , Perfilación de la Expresión Génica , Perfilación de la Expresión Génica/métodos , Análisis de la Célula Individual/métodos , Análisis por Conglomerados , Análisis de Secuencia de ARN/métodos , ARN/genética
16.
J Nutr Biochem ; 119: 109398, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37302664

RESUMEN

Plasma lipids are modulated by gene variants and many environmental factors, including diet-associated weight gain. However, understanding how these factors jointly interact to influence molecular networks that regulate plasma lipid levels is limited. Here, we took advantage of the BXD recombinant inbred family of mice to query weight gain as an environmental stressor on plasma lipids. Coexpression networks were examined in both nonobese and obese livers, and a network was identified that specifically responded to the obesogenic diet. This obesity-associated module was significantly associated with plasma lipid levels and enriched with genes known to have functions related to inflammation and lipid homeostasis. We identified key drivers of the module, including Cidec, Cidea, Pparg, Cd36, and Apoa4. The Pparg emerged as a potential master regulator of the module as it can directly target 19 of the top 30 hub genes. Importantly, activation of this module is causally linked to lipid metabolism in humans, as illustrated by correlation analysis and inverse-variance weighed Mendelian randomization. Our findings provide novel insights into gene-by-environment interactions for plasma lipid metabolism that may ultimately contribute to new biomarkers, better diagnostics, and improved approaches to prevent or treat dyslipidemia in patients.


Asunto(s)
Dieta Alta en Grasa , Redes Reguladoras de Genes , Humanos , Ratones , Animales , Dieta Alta en Grasa/efectos adversos , PPAR gamma/genética , Obesidad/genética , Obesidad/metabolismo , Aumento de Peso , Lípidos
17.
Genome Res ; 33(5): 689-702, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37127331

RESUMEN

Short tandem repeats (STRs) are a class of rapidly mutating genetic elements typically characterized by repeated units of 1-6 bp. We leveraged whole-genome sequencing data for 152 recombinant inbred (RI) strains from the BXD family of mice to map loci that modulate genome-wide patterns of new mutations arising during parent-to-offspring transmission at STRs. We defined quantitative phenotypes describing the numbers and types of germline STR mutations in each strain and performed quantitative trait locus (QTL) analyses for each of these phenotypes. We identified a locus on Chromosome 13 at which strains inheriting the C57BL/6J (B) haplotype have a higher rate of STR expansions than those inheriting the DBA/2J (D) haplotype. The strongest candidate gene in this locus is Msh3, a known modifier of STR stability in cancer and at pathogenic repeat expansions in mice and humans, as well as a current drug target against Huntington's disease. The D haplotype at this locus harbors a cluster of variants near the 5' end of Msh3, including multiple missense variants near the DNA mismatch recognition domain. In contrast, the B haplotype contains a unique retrotransposon insertion. The rate of expansion covaries positively with Msh3 expression-with higher expression from the B haplotype. Finally, detailed analysis of mutation patterns showed that strains carrying the B allele have higher expansion rates, but slightly lower overall total mutation rates, compared with those with the D allele, particularly at tetranucleotide repeats. Our results suggest an important role for inherited variants in Msh3 in modulating genome-wide patterns of germline mutations at STRs.


Asunto(s)
Repeticiones de Microsatélite , Sitios de Carácter Cuantitativo , Animales , Ratones , Haplotipos , Ratones Endogámicos C57BL , Ratones Endogámicos DBA
18.
bioRxiv ; 2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37214860

RESUMEN

The seventh iteration of the reference genome assembly for Rattus norvegicus-mRatBN7.2-corrects numerous misplaced segments and reduces base-level errors by approximately 9-fold and increases contiguity by 290-fold compared to its predecessor. Gene annotations are now more complete, significantly improving the mapping precision of genomic, transcriptomic, and proteomics data sets. We jointly analyzed 163 short-read whole genome sequencing datasets representing 120 laboratory rat strains and substrains using mRatBN7.2. We defined ~20.0 million sequence variations, of which 18.7 thousand are predicted to potentially impact the function of 6,677 genes. We also generated a new rat genetic map from 1,893 heterogeneous stock rats and annotated transcription start sites and alternative polyadenylation sites. The mRatBN7.2 assembly, along with the extensive analysis of genomic variations among rat strains, enhances our understanding of the rat genome, providing researchers with an expanded resource for studies involving rats.

19.
Proc Natl Acad Sci U S A ; 120(17): e2218617120, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37068254

RESUMEN

We have developed workflows to align 3D magnetic resonance histology (MRH) of the mouse brain with light sheet microscopy (LSM) and 3D delineations of the same specimen. We start with MRH of the brain in the skull with gradient echo and diffusion tensor imaging (DTI) at 15 µm isotropic resolution which is ~ 1,000 times higher than that of most preclinical MRI. Connectomes are generated with superresolution tract density images of ~5 µm. Brains are cleared, stained for selected proteins, and imaged by LSM at 1.8 µm/pixel. LSM data are registered into the reference MRH space with labels derived from the ABA common coordinate framework. The result is a high-dimensional integrated volume with registration (HiDiver) with alignment precision better than 50 µm. Throughput is sufficiently high that HiDiver is being used in quantitative studies of the impact of gene variants and aging on mouse brain cytoarchitecture and connectomics.


Asunto(s)
Imagen de Difusión Tensora , Microscopía , Ratones , Animales , Imagen de Difusión Tensora/métodos , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Espectroscopía de Resonancia Magnética , Imagen de Difusión por Resonancia Magnética/métodos
20.
bioRxiv ; 2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-37066137

RESUMEN

Pangenome graphs can represent all variation between multiple genomes, but existing methods for constructing them are biased due to reference-guided approaches. In response, we have developed PanGenome Graph Builder (PGGB), a reference-free pipeline for constructing unbi-ased pangenome graphs. PGGB uses all-to-all whole-genome alignments and learned graph embeddings to build and iteratively refine a model in which we can identify variation, measure conservation, detect recombination events, and infer phylogenetic relationships.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA