Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
1.
bioRxiv ; 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38077044

RESUMEN

PIK3R1 encodes three regulatory subunits of class IA phosphoinositide 3-kinase (PI3K), each associating with any of three catalytic subunits, namely p110α, p110ß or p110δ. Constitutional PIK3R1 mutations cause diseases with a genotype-phenotype relationship not yet fully explained: heterozygous loss-of-function mutations cause SHORT syndrome, featuring insulin resistance and short stature attributed to reduced p110α function, while heterozygous activating mutations cause immunodeficiency, attributed to p110δ activation and known as APDS2. Surprisingly, APDS2 patients do not show features of p110α hyperactivation, but do commonly have short stature or SHORT syndrome, suggesting p110α hypofunction. We sought to investigate this. In dermal fibroblasts from an APDS2 patient, we found no increased PI3K signalling, with p110δ expression markedly reduced. In preadipocytes, the APDS2 variant was potently dominant negative, associating with Irs1 and Irs2 but failing to heterodimerise with p110α. This attenuation of p110α signalling by a p110δ-activating PIK3R1 variant potentially explains co-incidence of gain-of-function and loss-of-function PIK3R1 phenotypes.

2.
Sci Adv ; 9(39): eadi8291, 2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37756394

RESUMEN

Ataxia-telangiectasia mutated (ATM) is a master kinase regulating DNA damage response that is activated by DNA double-strand breaks. However, ATM is also directly activated by reactive oxygen species, but how oxidative activation is achieved remains unknown. We determined the cryo-EM structure of an H2O2-activated ATM and showed that under oxidizing conditions, ATM formed an intramolecular disulfide bridge between two protomers that are rotated relative to each other when compared to the basal state. This rotation is accompanied by release of the substrate-blocking PRD region and twisting of the N-lobe relative to the C-lobe, which greatly optimizes catalysis. This active site remodeling enabled us to capture a substrate (p53) bound to the enzyme. This provides the first structural insights into how ATM is activated during oxidative stress.

3.
Nature ; 618(7963): 159-168, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37225977

RESUMEN

Harnessing the potential beneficial effects of kinase signalling through the generation of direct kinase activators remains an underexplored area of drug development1-5. This also applies to the PI3K signalling pathway, which has been extensively targeted by inhibitors for conditions with PI3K overactivation, such as cancer and immune dysregulation. Here we report the discovery of UCL-TRO-1938 (referred to as 1938 hereon), a small-molecule activator of the PI3Kα isoform, a crucial effector of growth factor signalling. 1938 allosterically activates PI3Kα through a distinct mechanism by enhancing multiple steps of the PI3Kα catalytic cycle and causes both local and global conformational changes in the PI3Kα structure. This compound is selective for PI3Kα over other PI3K isoforms and multiple protein and lipid kinases. It transiently activates PI3K signalling in all rodent and human cells tested, resulting in cellular responses such as proliferation and neurite outgrowth. In rodent models, acute treatment with 1938 provides cardioprotection from ischaemia-reperfusion injury and, after local administration, enhances nerve regeneration following nerve crush. This study identifies a chemical tool to directly probe the PI3Kα signalling pathway and a new approach to modulate PI3K activity, widening the therapeutic potential of targeting these enzymes through short-term activation for tissue protection and regeneration. Our findings illustrate the potential of activating kinases for therapeutic benefit, a currently largely untapped area of drug development.


Asunto(s)
Regeneración Nerviosa , Humanos , Neoplasias/tratamiento farmacológico , Regeneración Nerviosa/efectos de los fármacos , Isoformas de Proteínas/agonistas , Transducción de Señal/efectos de los fármacos , Fosfatidilinositol 3-Quinasa Clase I/química , Fosfatidilinositol 3-Quinasa Clase I/efectos de los fármacos , Cardiotónicos/farmacología , Animales , Biocatálisis/efectos de los fármacos , Conformación Proteica/efectos de los fármacos , Neuritas/efectos de los fármacos , Daño por Reperfusión/prevención & control , Compresión Nerviosa , Proliferación Celular/efectos de los fármacos
4.
Cell Rep ; 42(3): 112172, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36842083

RESUMEN

Class IB phosphoinositide 3-kinase (PI3Kγ) is activated in immune cells and can form two distinct complexes (p110γ-p84 and p110γ-p101), which are differentially activated by G protein-coupled receptors (GPCRs) and Ras. Using a combination of X-ray crystallography, hydrogen deuterium exchange mass spectrometry (HDX-MS), electron microscopy, molecular modeling, single-molecule imaging, and activity assays, we identify molecular differences between p110γ-p84 and p110γ-p101 that explain their differential membrane recruitment and activation by Ras and GPCRs. The p110γ-p84 complex is dynamic compared with p110γ-p101. While p110γ-p101 is robustly recruited by Gßγ subunits, p110γ-p84 is weakly recruited to membranes by Gßγ subunits alone and requires recruitment by Ras to allow for Gßγ activation. We mapped two distinct Gßγ interfaces on p101 and the p110γ helical domain, with differences in the C-terminal domain of p84 and p101 conferring sensitivity of p110γ-p101 to Gßγ activation. Overall, our work provides key insight into the molecular basis for how PI3Kγ complexes are activated.


Asunto(s)
Fosfatidilinositol 3-Quinasas , Transducción de Señal , Transducción de Señal/fisiología , Fosfatidilinositol 3-Quinasas/metabolismo , Receptores Acoplados a Proteínas G , Modelos Moleculares , Fosfatidilinositol 3-Quinasa
5.
Nat Chem Biol ; 19(1): 18-27, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36109648

RESUMEN

Phosphatidylinositol 3-kinase type 2α (PI3KC2α) and related class II PI3K isoforms are of increasing biomedical interest because of their crucial roles in endocytic membrane dynamics, cell division and signaling, angiogenesis, and platelet morphology and function. Herein we report the development and characterization of PhosphatidylInositol Three-kinase Class twO INhibitors (PITCOINs), potent and highly selective small-molecule inhibitors of PI3KC2α catalytic activity. PITCOIN compounds exhibit strong selectivity toward PI3KC2α due to their unique mode of interaction with the ATP-binding site of the enzyme. We demonstrate that acute inhibition of PI3KC2α-mediated synthesis of phosphatidylinositol 3-phosphates by PITCOINs impairs endocytic membrane dynamics and membrane remodeling during platelet-dependent thrombus formation. PITCOINs are potent and selective cell-permeable inhibitors of PI3KC2α function with potential biomedical applications ranging from thrombosis to diabetes and cancer.


Asunto(s)
Fosfatidilinositol 3-Quinasa , Fosfatidilinositol 3-Quinasas , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositoles , Fosfatos de Fosfatidilinositol/metabolismo
6.
Science ; 374(6573): eabk0410, 2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34882480

RESUMEN

Cytokinetic membrane abscission is a spatially and temporally regulated process that requires ESCRT (endosomal sorting complexes required for transport)­dependent control of membrane remodeling at the midbody, a subcellular organelle that defines the cleavage site. Alteration of ESCRT function can lead to cataract, but the underlying mechanism and its relation to cytokinesis are unclear. We found a lens-specific cytokinetic process that required PI3K-C2α (phosphatidylinositol-4-phosphate 3-kinase catalytic subunit type 2α), its lipid product PI(3,4)P2 (phosphatidylinositol 3,4-bisphosphate), and the PI(3,4)P2­binding ESCRT-II subunit VPS36 (vacuolar protein-sorting-associated protein 36). Loss of each of these components led to impaired cytokinesis, triggering premature senescence in the lens of fish, mice, and humans. Thus, an evolutionarily conserved pathway underlies the cell type­specific control of cytokinesis that helps to prevent early onset cataract by protecting from senescence.


Asunto(s)
Catarata/patología , Senescencia Celular , Citocinesis , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Cristalino/citología , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositoles/metabolismo , Envejecimiento Prematuro , Animales , Evolución Biológica , Proteínas de Unión al Calcio/metabolismo , Catarata/metabolismo , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Humanos , Cristalino/crecimiento & desarrollo , Cristalino/metabolismo , Ratones , Mutación , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 4,5-Difosfato/metabolismo , Tubulina (Proteína)/metabolismo , Pez Cebra , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
7.
Elife ; 102021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34519269

RESUMEN

The mTORC1 kinase complex regulates cell growth, proliferation, and survival. Because mis-regulation of DEPTOR, an endogenous mTORC1 inhibitor, is associated with some cancers, we reconstituted mTORC1 with DEPTOR to understand its function. We find that DEPTOR is a unique partial mTORC1 inhibitor that may have evolved to preserve feedback inhibition of PI3K. Counterintuitively, mTORC1 activated by RHEB or oncogenic mutation is much more potently inhibited by DEPTOR. Although DEPTOR partially inhibits mTORC1, mTORC1 prevents this inhibition by phosphorylating DEPTOR, a mutual antagonism that requires no exogenous factors. Structural analyses of the mTORC1/DEPTOR complex showed DEPTOR's PDZ domain interacting with the mTOR FAT region, and the unstructured linker preceding the PDZ binding to the mTOR FRB domain. The linker and PDZ form the minimal inhibitory unit, but the N-terminal tandem DEP domains also significantly contribute to inhibition.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Sitios de Unión , Microscopía por Crioelectrón , Escherichia coli , Regulación de la Expresión Génica , Humanos , Procesamiento de Imagen Asistido por Computador , Péptidos y Proteínas de Señalización Intracelular/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Modelos Moleculares , Dominios PDZ , Unión Proteica , Conformación Proteica , Proteínas Recombinantes , Serina-Treonina Quinasas TOR/genética
8.
Nat Commun ; 12(1): 1564, 2021 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-33692360

RESUMEN

The lipid phosphatidylinositol-3-phosphate (PI3P) is a regulator of two fundamental but distinct cellular processes, endocytosis and autophagy, so its generation needs to be under precise temporal and spatial control. PI3P is generated by two complexes that both contain the lipid kinase VPS34: complex II on endosomes (VPS34/VPS15/Beclin 1/UVRAG), and complex I on autophagosomes (VPS34/VPS15/Beclin 1/ATG14L). The endosomal GTPase Rab5 binds complex II, but the mechanism of VPS34 activation by Rab5 has remained elusive, and no GTPase is known to bind complex I. Here we show that Rab5a-GTP recruits endocytic complex II to membranes and activates it by binding between the VPS34 C2 and VPS15 WD40 domains. Electron cryotomography of complex II on Rab5a-decorated vesicles shows that the VPS34 kinase domain is released from inhibition by VPS15 and hovers over the lipid bilayer, poised for catalysis. We also show that the GTPase Rab1a, which is known to be involved in autophagy, recruits and activates the autophagy-specific complex I, but not complex II. Both Rabs bind to the same VPS34 interface but in a manner unique for each. These findings reveal how VPS34 complexes are activated on membranes by specific Rab GTPases and how they are recruited to unique cellular locations.


Asunto(s)
Membrana Celular/metabolismo , Fosfatidilinositol 3-Quinasas Clase III/química , Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Proteínas de Unión al GTP rab1/química , Proteínas de Unión al GTP rab1/metabolismo , Proteínas de Unión al GTP rab5/química , Proteínas de Unión al GTP rab5/metabolismo , Beclina-1/química , Beclina-1/genética , Beclina-1/metabolismo , Fosfatidilinositol 3-Quinasas Clase III/genética , Endosomas/metabolismo , Humanos , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Estructura Secundaria de Proteína , Tomografía , Proteínas Supresoras de Tumor/química , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Proteína de Clasificación Vacuolar VPS15/química , Proteína de Clasificación Vacuolar VPS15/genética , Proteína de Clasificación Vacuolar VPS15/metabolismo , Proteínas de Unión al GTP rab1/genética , Proteínas de Unión al GTP rab5/genética
9.
Autophagy ; 17(3): 823-825, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33446010

RESUMEN

Phosphatidylinositol-3-phosphate (PtdIns3P) is essential for generating autophagosomes and regulating endocytic trafficking. Recently, we have shown that the activities of human PIK3C3/VPS34-containing complexes I and II, which synthesize PtdIns3P, are greatly affected by three membrane physicochemical parameters: lipid unsaturation, membrane curvature, and negative charge. Both complexes are more active on membranes composed of unsaturated lipids than saturated lipids, and high membrane curvature can compensate for the negative effect of high lipid saturation. Negatively charged phosphatidylserine (PS) activates the complexes, as well as PIK3C3/VPS34 alone. The kinase activity of complex I depends critically on the ATG14 BATS domain, whereas complex II relies on the BECN1 BARA domain. Our findings highlight the importance of the membrane character as sensed by the unique membrane binding motifs/domain of the complexes for regulating PIK3C3/VPS34 activity.


Asunto(s)
Autofagia , Fosfatidilinositol 3-Quinasas Clase III , Autofagosomas , Proteínas Relacionadas con la Autofagia , Endosomas , Humanos
10.
Biophys J ; 119(11): 2205-2218, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33137306

RESUMEN

VPS34 complex II (VPS34CII) is a 386-kDa assembly of the lipid kinase subunit VPS34 and three regulatory subunits that altogether function as a prototypical class III phosphatidylinositol-3-kinase (PI3K). When the active VPS34CII complex is docked to the cytoplasmic surface of endosomal membranes, it phosphorylates its substrate lipid (phosphatidylinositol, PI) to generate the essential signaling lipid phosphatidylinositol-3-phosphate (PI3P). In turn, PI3P recruits an array of signaling proteins containing PI3P-specific targeting domains (including FYVE, PX, and PROPPINS) to the membrane surface, where they initiate key cell processes. In endocytosis and early endosome development, net VPS34CII-catalyzed PI3P production is greatly amplified by Rab5A, a small G protein of the Ras GTPase superfamily. Moreover, VPS34CII and Rab5A are each strongly linked to multiple human diseases. Thus, a molecular understanding of the mechanism by which Rab5A activates lipid kinase activity will have broad impacts in both signaling biology and medicine. Two general mechanistic models have been proposed for small G protein activation of PI3K lipid kinases. 1) In the membrane recruitment mechanism, G protein association increases the density of active kinase on the membrane. And 2) in the allosteric activation mechanism, G protein allosterically triggers an increase in the specific activity (turnover rate) of the membrane-bound kinase molecule. This study employs an in vitro single-molecule approach to elucidate the mechanism of GTP-Rab5A-associated VPS34CII kinase activation in a reconstituted GTP-Rab5A-VPS34CII-PI3P-PX signaling pathway on a target membrane surface. The findings reveal that both membrane recruitment and allosteric mechanisms make important contributions to the large increase in VPS34CII kinase activity and PI3P production triggered by membrane-anchored GTP-Rab5A. Notably, under near-physiological conditions in the absence of other activators, membrane-anchored GTP-Rab5A provides strong, virtually binary on-off switching and is required for VPS34CII membrane binding and PI3P production.


Asunto(s)
Fosfatidilinositol 3-Quinasas Clase III , Endosomas , Proteínas de Unión al GTP rab5 , Endocitosis , Humanos , Membranas Intracelulares , Fosfatidilinositoles
11.
Elife ; 92020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32602837

RESUMEN

The lipid kinase VPS34 orchestrates diverse processes, including autophagy, endocytic sorting, phagocytosis, anabolic responses and cell division. VPS34 forms various complexes that help adapt it to specific pathways, with complexes I and II being the most prominent ones. We found that physicochemical properties of membranes strongly modulate VPS34 activity. Greater unsaturation of both substrate and non-substrate lipids, negative charge and curvature activate VPS34 complexes, adapting them to their cellular compartments. Hydrogen/deuterium exchange mass spectrometry (HDX-MS) of complexes I and II on membranes elucidated structural determinants that enable them to bind membranes. Among these are the Barkor/ATG14L autophagosome targeting sequence (BATS), which makes autophagy-specific complex I more active than the endocytic complex II, and the Beclin1 BARA domain. Interestingly, even though Beclin1 BARA is common to both complexes, its membrane-interacting loops are critical for complex II, but have only a minor role for complex I.


Asunto(s)
Autofagia , Membrana Celular/fisiología , Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Endosomas , Humanos
12.
Artículo en Inglés | MEDLINE | ID: mdl-31636093

RESUMEN

The tumor suppressor phosphatase and tensin homolog on chromosome 10 (PTEN) is a tightly regulated enzyme responsible for dephosphorylating the progrowth lipid messenger molecule phosphatidylinositol 3,4,5-trisphosphate (PIP3) on the plasma membrane. The carboxy-terminal tail (CTT) of PTEN is key for regulation of the enzyme. When phosphorylated, the unstructured CTT interacts with the phosphatase-C2 superdomain to inactivate the enzyme by preventing membrane association. PTEN mutations associated with cancer also inactivate the enzyme. Alternate translation-initiation sites generate extended isoforms of PTEN, such as PTEN-L that has multiple roles in cells. The extended amino-terminal region bears a signal sequence and a polyarginine sequence to facilitate exit from and entry into cells, respectively, and a membrane-binding helix that activates the enzyme. This amino-terminal region also facilitates mitochondrial and nucleolar localization. This review explores PTEN structure and its impact on localization and regulation.


Asunto(s)
Fosfohidrolasa PTEN/química , Secuencia de Aminoácidos , Humanos , Mutación , Neoplasias/genética , Neoplasias/metabolismo , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Fosforilación
13.
Structure ; 27(12): 1739-1741, 2019 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-31801096

RESUMEN

In this issue of Structure, Das et al. (2019) probe the structure and dynamics of dimeric cytohesins (guanine nucleotide exchange factors for ADP-ribosylation factors), in solution and on membranes. Unleashing an arsenal of methods, they demonstrate that a pleckstrin-homology domain-mediated membrane recruitment promotes conformational changes that prime cytohesins for allosteric activation.


Asunto(s)
Factores de Ribosilacion-ADP , Factores de Intercambio de Guanina Nucleótido , Dominios Homólogos a Pleckstrina
14.
Elife ; 82019 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-31749445

RESUMEN

The eukaryotic translation initiation factor 2α (eIF2α) kinase GCN2 is activated by amino acid starvation to elicit a rectifying physiological program known as the Integrated Stress Response (ISR). A role for uncharged tRNAs as activating ligands of yeast GCN2 is supported experimentally. However, mouse GCN2 activation has recently been observed in circumstances associated with ribosome stalling with no global increase in uncharged tRNAs. We report on a mammalian CHO cell-based CRISPR-Cas9 mutagenesis screen for genes that contribute to ISR activation by amino acid starvation. Disruption of genes encoding components of the ribosome P-stalk, uL10 and P1, selectively attenuated GCN2-mediated ISR activation by amino acid starvation or interference with tRNA charging without affecting the endoplasmic reticulum unfolded protein stress-induced ISR, mediated by the related eIF2α kinase PERK. Wildtype ribosomes isolated from CHO cells, but not those with P-stalk lesions, stimulated GCN2-dependent eIF2α phosphorylation in vitro. These observations support a model whereby lack of a cognate charged tRNA exposes a latent capacity of the ribosome P-stalk to activate GCN2 in cells and help explain the emerging link between ribosome stalling and ISR activation.


Asunto(s)
Aminoácidos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Ribosomas/metabolismo , Inanición/metabolismo , Animales , Células CHO , Sistemas CRISPR-Cas , Cricetulus , Retículo Endoplásmico/metabolismo , Regulación Enzimológica de la Expresión Génica , Células HeLa , Humanos , Cinética , Ligandos , Ratones , Modelos Moleculares , Mutagénesis , Fosforilación , Unión Proteica , Conformación Proteica , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/genética , Desplegamiento Proteico , ARN de Transferencia/metabolismo , Ribosomas/química , Transducción de Señal , Transcriptoma , eIF-2 Quinasa/genética , eIF-2 Quinasa/metabolismo
15.
Science ; 366(6462): 203-210, 2019 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-31601764

RESUMEN

The Rag guanosine triphosphatases (GTPases) recruit the master kinase mTORC1 to lysosomes to regulate cell growth and proliferation in response to amino acid availability. The nucleotide state of Rag heterodimers is critical for their association with mTORC1. Our cryo-electron microscopy structure of RagA/RagC in complex with mTORC1 shows the details of RagA/RagC binding to the RAPTOR subunit of mTORC1 and explains why only the RagAGTP/RagCGDP nucleotide state binds mTORC1. Previous kinetic studies suggested that GTP binding to one Rag locks the heterodimer to prevent GTP binding to the other. Our crystal structures and dynamics of RagA/RagC show the mechanism for this locking and explain how oncogenic hotspot mutations disrupt this process. In contrast to allosteric activation by RHEB, Rag heterodimer binding does not change mTORC1 conformation and activates mTORC1 by targeting it to lysosomes.


Asunto(s)
Diana Mecanicista del Complejo 1 de la Rapamicina/química , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteínas de Unión al GTP Monoméricas/química , Proteínas de Unión al GTP Monoméricas/metabolismo , Proteína Reguladora Asociada a mTOR/metabolismo , Microscopía por Crioelectrón , Cristalografía por Rayos X , Dimerización , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Humanos , Lisosomas/metabolismo , Espectrometría de Masas , Modelos Moleculares , Proteínas de Unión al GTP Monoméricas/sangre , Proteínas de Unión al GTP Monoméricas/genética , Mutación , Unión Proteica , Conformación Proteica , Conformación Proteica en Hélice alfa , Dominios y Motivos de Interacción de Proteínas , Proteína Reguladora Asociada a mTOR/química , Proteínas de Saccharomyces cerevisiae/sangre , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/química , Factores de Transcripción/metabolismo
16.
Nat Commun ; 10(1): 4364, 2019 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-31554793

RESUMEN

Phosphatidylinositol 3-kinase-gamma (PI3Kγ) is highly expressed in leukocytes and is an attractive drug target for immune modulation. Different experimental systems have led to conflicting conclusions regarding inflammatory and anti-inflammatory functions of PI3Kγ. Here, we report a human patient with bi-allelic, loss-of-function mutations in PIK3CG resulting in absence of the p110γ catalytic subunit of PI3Kγ. She has a history of childhood-onset antibody defects, cytopenias, and T lymphocytic pneumonitis and colitis, with reduced peripheral blood memory B, memory CD8+ T, and regulatory T cells and increased CXCR3+ tissue-homing CD4 T cells. PI3Kγ-deficient macrophages and monocytes produce elevated inflammatory IL-12 and IL-23 in a GSK3α/ß-dependent manner upon TLR stimulation. Pik3cg-deficient mice recapitulate major features of human disease after exposure to natural microbiota through co-housing with pet-store mice. Together, our results emphasize the physiological importance of PI3Kγ in restraining inflammation and promoting appropriate adaptive immune responses in both humans and mice.


Asunto(s)
Inmunidad Adaptativa/inmunología , Fosfatidilinositol 3-Quinasa Clase Ib/inmunología , Síndromes de Inmunodeficiencia/inmunología , Inflamación/inmunología , Microbiota/inmunología , Inmunidad Adaptativa/genética , Animales , Células Cultivadas , Fosfatidilinositol 3-Quinasa Clase Ib/deficiencia , Fosfatidilinositol 3-Quinasa Clase Ib/genética , Modelos Animales de Enfermedad , Femenino , Humanos , Síndromes de Inmunodeficiencia/genética , Síndromes de Inmunodeficiencia/metabolismo , Inflamación/genética , Inflamación/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
17.
Proc Natl Acad Sci U S A ; 116(11): 4946-4954, 2019 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-30804176

RESUMEN

Cells dynamically adjust their protein translation profile to maintain homeostasis in changing environments. During nutrient stress, the kinase general control nonderepressible 2 (GCN2) phosphorylates translation initiation factor eIF2α, initiating the integrated stress response (ISR). To examine the mechanism of GCN2 activation, we have reconstituted this process in vitro, using purified components. We find that recombinant human GCN2 is potently stimulated by ribosomes and, to a lesser extent, by tRNA. Hydrogen/deuterium exchange-mass spectrometry (HDX-MS) mapped GCN2-ribosome interactions to domain II of the uL10 subunit of the ribosomal P-stalk. Using recombinant, purified P-stalk, we showed that this domain of uL10 is the principal component of binding to GCN2; however, the conserved 14-residue C-terminal tails (CTTs) in the P1 and P2 P-stalk proteins are also essential for GCN2 activation. The HisRS-like and kinase domains of GCN2 show conformational changes upon binding recombinant P-stalk complex. Given that the ribosomal P-stalk stimulates the GTPase activity of elongation factors during translation, we propose that the P-stalk could link GCN2 activation to translational stress, leading to initiation of ISR.


Asunto(s)
Proteínas Serina-Treonina Quinasas/metabolismo , Ribosomas/metabolismo , Secuencias de Aminoácidos , Factor 2 Eucariótico de Iniciación/metabolismo , Humanos , Fosforilación , Dominios Proteicos , Proteínas Serina-Treonina Quinasas/química , Relación Estructura-Actividad
18.
Nat Chem Biol ; 15(4): 348-357, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30718815

RESUMEN

We have discovered a class of PI3Kγ inhibitors exhibiting over 1,000-fold selectivity over PI3Kα and PI3Kß. On the basis of X-ray crystallography, hydrogen-deuterium exchange-mass spectrometry and surface plasmon resonance experiments we propose that the cyclopropylethyl moiety displaces the DFG motif of the enzyme away from the adenosine tri-phosphate binding site, inducing a large conformational change in both the kinase- and helical domains of PI3Kγ. Site directed mutagenesis explained how the conformational changes occur. Our results suggest that these cyclopropylethyl substituted compounds selectively inhibit the active state of PI3Kγ, which is unique to these compounds and to the PI3Kγ isoform, explaining their excellent potency and unmatched isoform selectivity that were confirmed in cellular systems. This is the first example of a Class I PI3K inhibitor achieving its selectivity by affecting the DFG motif in a manner that bears similarity to DFG in/out for type II protein kinase inhibitors.


Asunto(s)
Fosfatidilinositol 3-Quinasa Clase Ib/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Adenosina Trifosfatasas , Sitios de Unión , Fosfatidilinositol 3-Quinasa Clase I/antagonistas & inhibidores , Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Ftalimidas , Unión Proteica , Conformación Proteica , Isoformas de Proteínas/fisiología , Inhibidores de Proteínas Quinasas , Especificidad por Sustrato
19.
J Lipid Res ; 60(2): 229-241, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30397185

RESUMEN

VPS34 phosphorylates phosphatidylinositol to produce PtdIns3P and is the progenitor of the phosphoinositide 3-kinase (PI3K) family. VPS34 has a simpler domain organization than class I PI3Ks, which belies the complexity of its quaternary organization, with the enzyme always functioning within larger assemblies. PtdIns3P recruits specific recognition modules that are common in protein-sorting pathways, such as autophagy and endocytic sorting. It is best characterized in two heterotetramers, complexes I and II. Complex I is composed of VPS34, VPS15, Beclin 1, and autophagy-related gene (ATG)14L, whereas complex II replaces ATG14L with UVRAG. Because VPS34 can form a component of several distinct complexes, it enables independent regulation of various pathways that are controlled by PtdIns3P. Complexes I and II are critical for early events in autophagy and endocytic sorting, respectively. Autophagy has a complex association with cancer. In early stages, it inhibits tumorigenesis, but in later stages, it acts as a survival factor for tumors. Recently, various disease-associated somatic mutations were found in genes encoding complex I and II subunits. Lipid kinase activities of the complexes are also influenced by posttranslational modifications (PTMs). Mapping PTMs and somatic mutations on three-dimensional models of the complexes suggests mechanisms for how these affect VPS34 activity.


Asunto(s)
Fosfatidilinositol 3-Quinasas Clase III/química , Fosfatidilinositol 3-Quinasas Clase III/antagonistas & inhibidores , Fosfatidilinositol 3-Quinasas Clase III/genética , Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Endocitosis , Inhibidores Enzimáticos/farmacología , Humanos , Procesamiento Proteico-Postraduccional
20.
Structure ; 26(3): 446-458.e8, 2018 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-29478821

RESUMEN

Receptor tyrosine kinase FGFR3 is involved in many signaling networks and is frequently mutated in developmental disorders and cancer. The Hsp90/Cdc37 chaperone system is essential for function of normal and neoplastic cells. Here we uncover the mechanistic inter-relationships between these proteins by combining approaches including NMR, HDX-MS, and SAXS. We show that several disease-linked mutations convert FGFR3 to a stronger client, where the determinant underpinning client strength involves an allosteric network through the N-lobe and at the lobe interface. We determine the architecture of the client kinase/Cdc37 complex and demonstrate, together with site-specific information, that binding of Cdc37 to unrelated kinases induces a common, extensive conformational remodeling of the kinase N-lobe, beyond localized changes and interactions within the binary complex. As further shown for FGFR3, this processing by Cdc37 deactivates the kinase and presents it, in a specific orientation established in the complex, for direct recognition by Hsp90.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Chaperoninas/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Mutación , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/química , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/metabolismo , Sitio Alostérico , Humanos , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Conformación Proteica , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/genética , Dispersión del Ángulo Pequeño , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...