Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 232
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cardiovasc Diabetol ; 23(1): 332, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39251982

RESUMEN

BACKGROUND: In populations with chronic disease, skin autofluorescence (SAF), a measure of long-term fluorescent advanced glycation end-products (AGEs) accumulation in body tissues, has been associated with vascular endothelial function, measured using flow-mediated dilation (FMD). The primary aim of this study was to quantify the relationship between endothelial function and tissue accumulation of AGEs in adults from the general population to determine whether SAF could be used as a marker to predict early impairment of the endothelium. METHODS: A cross-sectional study was conducted with 125 participants (median age: 28.5 y, IQR: 24.4-36.0; 54% women). Endothelial function was measured by fasting FMD. Skin AGEs were measured as SAF using an AGE Reader. Participant anthropometry, blood pressure, and blood biomarkers were also measured. Associations were evaluated using multivariable regression analysis and were adjusted for significant covariates. RESULTS: FMD was inversely correlated with SAF (ρ = -0.50, P < 0.001) and chronological age (ρ = -0.51, P < 0.001). In the multivariable analysis, SAF, chronological age, and male sex were independently associated with reduced FMD (B [95% CI]; -2.60 [-4.40, -0.80]; -0.10 [-0.16, -0.03]; 1.40 [0.14, 2.67], respectively), with the multivariable model adjusted R2 = 0.31, P < 0.001. CONCLUSIONS: Higher skin AGE levels, as measured by SAF, were associated with lower FMD values, in a predominantly young, healthy population. Additionally, older age and male participants exhibited significantly lower FMD values, corresponding with compromised endothelial function. These results suggest that SAF, a simple and inexpensive marker, could be used to predict endothelial impairment before the emergence of any structural artery pathophysiology or classic cardiovascular disease risk markers. TRIAL REGISTRATION: The study was prospectively registered with the Australian New Zealand Clinical Trials Registry (ACTRN12621000821897) and concurrently entered into the WHO International Clinical Trials Registry Platform under the same ID number.


Asunto(s)
Biomarcadores , Endotelio Vascular , Productos Finales de Glicación Avanzada , Piel , Vasodilatación , Humanos , Masculino , Femenino , Productos Finales de Glicación Avanzada/metabolismo , Productos Finales de Glicación Avanzada/sangre , Estudios Transversales , Adulto , Piel/irrigación sanguínea , Piel/metabolismo , Endotelio Vascular/metabolismo , Endotelio Vascular/fisiopatología , Biomarcadores/sangre , Adulto Joven , Factores de Edad , Voluntarios Sanos , Imagen Óptica , Valor Predictivo de las Pruebas , Factores Sexuales
2.
Foods ; 13(15)2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39123592

RESUMEN

Food innovation that utilises agricultural waste while enhancing nutritional value is important for waste valorisation and consumer health. This study investigated incorporating spinach (Spinacia oleracea), as a model leafy agricultural waste, into wheat bread. We analysed the nutrient content, colour, texture, sensory attributes and purchase/consume intention ratings. Adding 10-40% spinach (w/w) yielded loaves with similar heights but significantly different colour and texture (p < 0.05) from white bread. Increasing spinach decreased total carbohydrates (including starch) while significantly increasing other nutrients (protein, fibre, iron, magnesium, potassium, zinc, calcium, vitamins A, C, E, folate, niacin, pyridoxine, nitrate/nitrite and polyphenols) (p < 0.05). Spinach addition increased bread porosity, linked to higher pasting parameters (peak, trough, breakdown, final and setback viscosity) with reduced pasting time and temperature. Texture analysis resulted in decreased hardness, chewiness, gumminess and firmness while increasing cohesiveness, with maximum resilience at 20% spinach enrichment. Sensory analysis with 21 untrained panellists revealed decreased visual appeal, less preferred taste, odour and overall liking (p < 0.05) with increasing spinach, with no significant difference in texture acceptance, but the 20% enrichment had comparable acceptance to white bread. Enriching staple foods like bread with leafy vegetable waste offers a promising approach for increasing daily vegetable intake.

3.
Heliyon ; 10(13): e33497, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39040322

RESUMEN

This study aimed to develop a low-fructose (<3 g/serve) carbohydrate (CHO) gel for athletes. Various prototypes with 30 g CHO/serve and differing water content (12 %, 21 %, 32 %, 39 % w/v) were created and evaluated for sensory attributes. The final gel contained 62.1 ± 0.2 g CHO/100 g with 0.17 % w/w fructose. Endurance athletes (n = 20) underwent a feeding-challenge protocol, ingesting 30 g gel every 20 min during 2 h of running (60 % V ˙ O2max), followed by a 1 h self-paced distance test. Blood glucose increased significantly from baseline (4.0 ± 0.9 vs. 6.6 ± 0.6 mmol/L, p < 0.001) and remained elevated after the distance test (4.9 ± 0.7 mmol/L, p < 0.05). Breath hydrogen levels increased (5 ± 4 ppm, p < 0.05) without substantial CHO malabsorption detected. Gastrointestinal symptoms (GIS) increased during exercise but were mild. The low-fructose CHO gel demonstrated good tolerance, promoting glucose availability without severe GIS or CHO malabsorption.

4.
Biofactors ; 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886986

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) binds to angiotensin-converting enzyme 2 (ACE2) on host cells, via its spike protein, and transmembrane protease, serine 2 (TMPRSS2) cleaves the spike-ACE2 complex to facilitate virus entry. As rate-limiting steps for virus entry, modulation of ACE2 and/or TMPRSS2 may decrease SARS-CoV-2 infectivity and COVID-19 severity. In silico modeling suggested the natural bioactive flavonoid quercetin can bind to ACE2 and a recent randomized clinical trial demonstrated that oral supplementation with quercetin increased COVID-19 recovery. A range of cultured human cells were assessed for co-expression of ACE2 and TMPRSS2. Immortalized Calu-3 lung cells, cultured and matured at an air-liquid interface (Calu-3-ALIs), were established as the most appropriate. Primary bronchial epithelial cells (PBECs) were obtained from healthy adult males (N = 6) and cultured under submerged conditions to corroborate the outcomes. Upon maturation or reaching 80% confluence, respectively, the Calu-3-ALIs and PBECs were treated with quercetin, and mRNA and protein expression were assessed by droplet digital PCR and ELISA, respectively. SARS-CoV-2 infectivity, and the effects of pre- and co-treatment with quercetin, was assessed by median tissue culture infectious dose assay. Quercetin dose-dependently decreased ACE2 and TMPRSS2 mRNA and protein in both Calu-3-ALIs and PBECs after 4 h, while TMPRSS2 remained suppressed in response to prolonged treatment with lower doses (twice daily for 3 days). Quercetin also acutely decreased ADAM17 mRNA, but not ACE, in Calu-3-ALIs, and this warrants further investigation. Calu-3-ALIs, but not PBECs, were successfully infected with SARS-CoV-2; however, quercetin had no antiviral effect, neither directly nor indirectly through downregulation of ACE2 and TMPRSS2. Calu-3-ALIs were reaffirmed to be an optimal cell model for research into the regulation of ACE2 and TMPRSS2, without the need for prior genetic modification, and will prove valuable in future coronavirus and respiratory infectious disease work. However, our data demonstrate that a significant decrease in the expression of ACE2 and TMPRSS2 by a promising prophylactic candidate may not translate to infection prevention.

5.
Food Res Int ; 189: 114572, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38876610

RESUMEN

One approach to controlling type 2 diabetes (T2D) is to lower postprandialglucose spikesby slowing down the digestion of carbohydrates and the absorption of glucose in the small intestine. The consumption of walnuts is associated with a reduced risk of chronic diseases such as T2D, suggested to be partly due to the high content of (poly)phenols. This study evaluated, for the first time, the inhibitory effect of a (poly)phenol-rich walnut extract on human carbohydrate digesting enzymes (salivary and pancreatic α-amylases, brush border sucrase-isomaltase) and on glucose transport across fully differentiated human intestinal Caco-2/TC7 monolayers. The walnut extract was rich in multiple (poly)phenols (70 % w/w) as analysed by Folin-Ciocalteau and by LCMS. It exhibited potent inhibition of both human salivary (IC50: 32.2 ± 2.5 µg walnut (poly)phenols (WP)/mL) and pancreatic (IC50: 56.7 ± 1.7 µg WP/mL) α-amylases, with weaker effects on human sucrase (IC50: 990 ± 20 µg WP/mL), maltase (IC50: 1300 ± 80 µg WP/mL), and isomaltase (IC25: 830 ± 60 µg WP/mL) activities. Selected individual walnut (poly)phenols inhibited human salivary α-amylase in the order: 1,3,4,6-tetragalloylglucose > ellagic acid pentoside > 1,2,6-tri-O-galloyl-ß-D-glucopyranose, with no inhibition by ellagic acid, gallic acid and 4-O-methylgallic acid. The (poly)phenol-rich walnut extract also attenuated (up to 59 %) the transfer of 2-deoxy-D-glucose across differentiated Caco-2/TC7 cell monolayers. This is the first report on the effect of (poly)phenol-rich extracts from any commonly-consumed nut kernel on any human starch-digesting enzyme, and suggests a mechanism through which walnut consumption may lower postprandial glucose spikes and contribute to their proposed health benefits.


Asunto(s)
Glucosa , Juglans , Extractos Vegetales , Polifenoles , Humanos , Polifenoles/farmacología , Juglans/química , Células CACO-2 , Glucosa/metabolismo , Extractos Vegetales/farmacología , Digestión/efectos de los fármacos , Nueces/química , Almidón/metabolismo , alfa-Amilasas/metabolismo , alfa-Amilasas/antagonistas & inhibidores , Transporte Biológico , Complejo Sacarasa-Isomaltasa/metabolismo
6.
Food Res Int ; 188: 114504, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38823880

RESUMEN

(Poly)phenols inhibit α-amylase by directly binding to the enzyme and/or by forming starch-polyphenol complexes. Conventional methods using starch as the substrate measure inhibition from both mechanisms, whereas the use of shorter oligosaccharides as substrates exclusively measures the direct interaction of (poly)phenols with the enzyme. In this study, using a chromatography-based method and a short oligosaccharide as the substrate, we investigated the detailed structural prerequisites for the direct inhibition of human salivary and pancreatic α-amylases by over 50 (poly)phenols from the (poly)phenol groups: flavonols, flavones, flavanones, flavan-3-ols, polymethoxyflavones, isoflavones, anthocyanidins and phenolic acids. Despite being structurally very similar (97% sequence homology), human salivary and pancreatic α-amylases were inhibited to different extents by the tested (poly)phenols. The most potent human salivary α-amylase inhibitors were luteolin and pelargonidin, while the methoxylated anthocyanidins, peonidin and petunidin, significantly blocked pancreatic enzyme activity. B-ring methoxylation of anthocyanidins increased inhibition against both human α-amylases while hydroxyl groups at C3 and B3' acted antagonistically in human salivary inhibition. C4 carbonyl reduction, or the positive charge on the flavonoid structure, was the key structural feature for human pancreatic inhibition. B-ring glycosylation did not affect salivary enzyme inhibition, but increased pancreatic enzyme inhibition when compared to its corresponding aglycone. Overall, our findings indicate that the efficacy of interaction with human α-amylase is mainly influenced by the type and placement of functional groups rather than the number of hydroxyl groups and molecular weight.


Asunto(s)
alfa-Amilasas Pancreáticas , Polifenoles , alfa-Amilasas Salivales , Humanos , Relación Estructura-Actividad , Polifenoles/farmacología , Polifenoles/química , alfa-Amilasas Salivales/metabolismo , alfa-Amilasas Salivales/antagonistas & inhibidores , alfa-Amilasas Pancreáticas/antagonistas & inhibidores , alfa-Amilasas Pancreáticas/metabolismo , Antocianinas/química , Antocianinas/farmacología , Antocianinas/metabolismo , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , alfa-Amilasas/antagonistas & inhibidores , alfa-Amilasas/metabolismo , alfa-Amilasas/química , Saliva/enzimología , Saliva/química
7.
Food Funct ; 15(10): 5209-5223, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38717256

RESUMEN

Elevated blood glucose concentration is a risk factor for developing metabolic dysfunction and insulin resistance, leading to type 2 diabetes and cardiovascular diseases. Nuts have the potential to inhibit α-amylase activity, and so lower postprandial glucose, due to their content of polyphenols and other bioactive compounds. We conducted a systematic literature review to assess the ability of extracts from commonly consumed edible parts of nuts to inhibit α-amylase. Among the 31 included papers, only four utilised human α-amylases. These papers indicated that polyphenol-rich chestnut skin extracts exhibited strong inhibition of both human salivary and pancreatic α-amylases, and that a polyphenol-rich almond skin extract was a potent inhibitor of human salivary α-amylase. The majority of the reviewed studies utilised porcine pancreatic α-amylase, which has ∼86% sequence homology with the corresponding human enzyme but with some key amino acid variations located within the active site. Polyphenol-rich extracts from chestnut, almond, kola nut, pecan and walnut, and peptides isolated from cashew, inhibited porcine pancreatic α-amylase. Some studies used α-amylases sourced from fungi or bacteria, outcomes from which are entirely irrelevant to human health, as they have no sequence homology with the human enzyme. Given the limited research involving human α-amylases, and the differences in inhibition compared to porcine enzymes and especially enzymes from microorganisms, it is recommended that future in vitro experiments place greater emphasis on utilising enzymes sourced from humans to facilitate a reliable prediction of effects in intervention studies.


Asunto(s)
Nueces , Extractos Vegetales , alfa-Amilasas , Nueces/química , Humanos , Extractos Vegetales/farmacología , Extractos Vegetales/química , Animales , alfa-Amilasas/antagonistas & inhibidores , alfa-Amilasas/metabolismo , Porcinos , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Polifenoles/farmacología , Polifenoles/química , Juglans/química
8.
Adv Nutr ; 15(6): 100232, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38648895

RESUMEN

Circadian clocks regulate metabolic homeostasis. Disruption to our circadian clocks, by lifestyle behaviors such as timing of eating and sleeping, has been linked to increased rates of metabolic disorders. There is now considerable evidence that selected dietary (poly)phenols, including flavonoids, phenolic acids and tannins, may modulate metabolic and circadian processes. This review evaluates the effects of (poly)phenols on circadian clock genes and linked metabolic homeostasis in vitro, and potential mechanisms of action, by critically evaluating the literature on mammalian cells. A systematic search was conducted to ensure full coverage of the literature and identified 43 relevant studies addressing the effects of (poly)phenols on cellular circadian processes. Nobiletin and tangeretin, found in citrus, (-)-epigallocatechin-3-gallate from green tea, urolithin A, a gut microbial metabolite from ellagitannins in fruit, curcumin, bavachalcone, cinnamic acid, and resveratrol at low micromolar concentrations all affect circadian molecular processes in multiple types of synchronized cells. Nobiletin emerges as a putative retinoic acid-related orphan receptor (RORα/γ) agonist, leading to induction of the circadian regulator brain and muscle ARNT-like 1 (BMAL1), and increased period circadian regulator 2 (PER2) amplitude and period. These effects are clear despite substantial variations in the protocols employed, and this review suggests a methodological framework to help future study design in this emerging area of research.


Asunto(s)
Relojes Circadianos , Homeostasis , Polifenoles , Relojes Circadianos/efectos de los fármacos , Relojes Circadianos/genética , Humanos , Homeostasis/efectos de los fármacos , Animales , Polifenoles/farmacología , Ritmo Circadiano/efectos de los fármacos , Catequina/farmacología , Catequina/análogos & derivados , Taninos/farmacología , , Células Cultivadas , Flavonas/farmacología , Citrus
9.
Compr Rev Food Sci Food Saf ; 23(2): e13307, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38369931

RESUMEN

Sugarcane (Saccharum sp.) plants are grown in warmer climates throughout the world and processed to produce sugar as well as other useful byproducts such as molasses and bagasse. Sugarcane is rich in (poly)phenols, but there has been no attempt to critically evaluate the published information based on the use of suitable methodologies. The objective of this review is to evaluate the quantitative and qualitative (poly)phenolic profiles of individual parts of the sugarcane plant and its multiple industrial products, which will help develop new processes and uses for sugarcane (poly)phenols. The quantitative analysis involves the examination of extraction, concentration, and analytical techniques used in each study for each plant part and product. The qualitative analysis indicates the identification of various (poly)phenols throughout the sugarcane processing chain, using only compounds elucidated through robust analytical methodologies such as mass spectrometry or nuclear magnetic resonance. In conclusion, sugarcane (poly)phenols are predominantly flavonoids and phenolic acids. The main flavonoids, derivatives of apigenin, luteolin, and tricin, with a substantial proportion of C-glycosides, are consistently found across all phases of sugarcane processing. The principal phenolic acids reported throughout the process include chlorogenic acids, as well as ferulic and caffeic acids mostly observed after hydrolysis. The derivation of precise quantitative information across publications is impeded by inconsistencies in analytical methodologies. The presence of multiple (poly)phenols with potential benefits for industrial applications and for health suggests sugarcane could be a useful provider of valuable compounds for future use in research and industrial processes.


Asunto(s)
Saccharum , Saccharum/química , Flavonoides/química , Fenoles/análisis , Hidroxibenzoatos
10.
Crit Rev Food Sci Nutr ; : 1-37, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38189312

RESUMEN

This critical review examines evidence for beneficial effects of quercetin phase-2 conjugates from clinical intervention studies, volunteer feeding trials, and in vitro work. Plasma concentrations of quercetin-3-O-glucuronide (Q3G) and 3'-methylquercetin-3-O-glucuronide (3'MQ3G) after supplementation may produce beneficial effects in macrophages and endothelial cells, respectively, especially if endogenous deglucuronidation occurs, and lower blood uric acid concentration via quercetin-3'-O-sulfate (Q3'S). Unsupplemented diets produce much lower concentrations (<50 nmol/l) rarely investigated in vitro. At 10 nmol/l, Q3'S and Q3G stimulate or suppress, respectively, angiogenesis in endothelial cells. Statistically significant effects have been reported at 100 nmol/l in breast cancer cells (Q3G), primary neuron cultures (Q3G), lymphocytes (Q3G and3'MQ3G) and HUVECs (QG/QS mixture), but it is unclear whether these translate to a health benefit in vivo. More sensitive and more precise methods to measure clinically significant endpoints are required before a conclusion can be drawn regarding effects at normal dietary concentrations. Future requirements include better understanding of inter-individual and temporal variation in plasma quercetin phase-2 conjugates, their mechanisms of action including deglucuronidation and desulfation both in vitro and in vivo, tissue accumulation and washout, as well as potential for synergy or antagonism with other quercetin metabolites and metabolites of other dietary phytochemicals.

11.
Prosthet Orthot Int ; 47(6): 607-613, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38064296

RESUMEN

BACKGROUND: Ankle-foot orthoses (AFOs) are widely used to restore mobility and reduce pain in individuals with lower extremity pain and disability. The use of a carbon fiber custom dynamic orthosis (CDO) with integrated physical training and psychosocial intervention has been shown to improve outcomes in a military setting, but civilian data are limited. OBJECTIVES: To use existing clinical data to evaluate the initial effectiveness of an integrated CDO and rehabilitative program and identify baseline characteristics that impact patient response to the intervention. STUDY DESIGN: Retrospective cohort. METHODS: Records of 131 adult patients who received a CDO and device specific training were reviewed. Patient-reported measures of pain and lower extremity function and physical measurements of walking and agility were extracted at baseline and on training completion. RESULTS: A majority of patients reported improved or greatly improved physical function (92%), maximum pain (69%), and typical pain (55%) and experienced improved or greatly improved walking speed (92%) and agility (52%) irrespective of age and sex. Regression models for examining short-term improvement in pain and physical function accounted for 52% (p < 0.001) and 26% (p < 0.001) of the outcome variance, respectively. Improvement in typical pain was influenced by baseline typical and maximum pain, and functional improvement was influenced by sex and baseline physical function. CONCLUSIONS: Most patients (92.4%) reported a positive initial outcome after intervention as measured using patient-reported and objective measures.


Asunto(s)
Ortesis del Pié , Aparatos Ortopédicos , Adulto , Humanos , Fibra de Carbono , Autoinforme , Estudios Retrospectivos , Dolor , Caminata/fisiología
12.
Prosthet Orthot Int ; 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37934175

RESUMEN

INTRODUCTION: Carbon fiber custom dynamic orthoses (CDOs) have been shown to effectively reduce pain and improve function in military service members with lower-limb impairment, but data are limited for civilians. OBJECTIVES: To evaluate the long-term outcomes of individuals who completed a CDO-centric care pathway in a civilian clinic by comparing baseline pain, mobility, and function with outcomes at long-term follow-up. To identify baseline characteristics and postintervention outcomes predictive of outcomes at long-term follow-up. METHODS: Records of 131 adult patients who received a CDO and CDO-centric training were reviewed. Patient-reported measures of pain and physical function and timed assessment of walking and agility collected during routine clinical care were extracted. These patients were contacted on average 4 (±1) years postintervention to complete a survey including measures of pain and physical function. RESULTS: The 63 participants who responded reported improved or greatly improved function, maximum pain, and typical pain on average, irrespective of age or sex (P < 0.001). Change in function from baseline to long-term follow-up was predicted by short-term change in function (35.1% of the variance; P < 0.001). Change in pain from baseline to long-term follow-up was predicted by baseline typical pain and change in four square step test time (63% of variance; P < 0.001). CONCLUSIONS: Most survey respondents reported positive outcomes. Long-term pain reduction and improved function were predicted by baseline status and by short-term changes associated with receiving a CDO and completing an intensive training program.

13.
Mol Nutr Food Res ; 67(23): e2300512, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37817369

RESUMEN

SCOPE: Metabolic flexibility is essential for a healthy response to a high fat meal, and is assessed by measuring postprandial changes in blood markers including peripheral blood mononuclear cells (PBMCs; lymphocytes and monocytes). However, there is no clear consensus on postprandial gene expression and protein changes in these cells. METHOD AND RESULTS: The study systematically reviews the literature reporting transcriptional and proteomic changes in PBMCs after consumption of a high fat meal. After re-analysis of the raw data to ensure equivalence between studies, ≈85 genes are significantly changed (defined as in the same direction in ≥3 studies) with about half involved in four processes: inflammation/oxidative stress, GTP metabolism, apoptosis, and lipid localization/transport. For meals consisting predominantly of unsaturated fatty acids (UFA), notable additional processes are phosphorylation and glucocorticoid response. For saturated fatty acids (SFA), genes related to migration/angiogenesis and platelet aggregation are also changed. CONCLUSION: Despite differences in study design, common gene changes are identified in PBMCs following a high fat meal. These common genes and processes will facilitate definition of the postprandial transcriptome as part of the overall postcibalome, linking all molecules and processes that change in the blood after a meal.


Asunto(s)
Grasas de la Dieta , Transcriptoma , Grasas de la Dieta/farmacología , Leucocitos Mononucleares/metabolismo , Consenso , Proteómica , Comidas , Periodo Posprandial , Estudios Cruzados , Triglicéridos
14.
J Physiol ; 601(20): 4573-4589, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37695123

RESUMEN

The aim of this set of randomised cross-over studies was to determine the impact of progressive heat exposure and carbohydrate or protein feeding during exertional stress on small intestine permeability using a dual sugar test. In our previous work, and typically in the field, recovery of lactulose and l-rhamnose is measured cumulatively in urine. This follow-up study exploits our novel high-performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD) protocol to accurately quantify the sugars in plasma. Endurance-trained participants completed experimental trial A (ET-A; n = 8), consisting of 2 h running at 60% V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ in temperate, warm and hot ambient conditions, and/or experimental trial B (ET-B; n = 9), consisting of 2 h running at 60% V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ in the heat while consuming water, carbohydrate or protein. Blood samples were collected and plasma lactulose (L) and l-rhamnose (R) appearance, after dual sugar solution ingestion at 90 min of exercise, was quantified by HPAEC-PAD to measure plasma L/R and reveal new information about intestinal permeability immediately post-exercise and during recovery. In ET-A, plasma L/R increased immediately post-exercise in hot compared with temperate and warm conditions, while, in ET-B, carbohydrate alleviated this, and this information was otherwise missed when measuring urine L/R. Consuming carbohydrate or protein before and during exercise attenuated small intestine permeability throughout recovery from exertional heat stress. We recommend using the dual sugar test with quantification of plasma sugars by HPAEC-PAD at intervals to maximise intestinal permeability data collection in exercise gastroenterology research, as this gives additional information compared to urinary measurements. KEY POINTS: Intestinal permeability is typically assessed using a dual sugar test, by administering a drink containing non-metabolisable sugars (e.g. lactulose (L) and l-rhamnose (R)) that can enter the circulation by paracellular translocation when the epithelium is compromised, and are subsequently measured in urine. We demonstrate that our recently developed ion chromatography protocol can be used to accurately quantify the L/R ratio in plasma, and that measuring L/R in plasma collected at intervals during the post-exercise recovery period reveals novel acute response information compared to measuring 5-h cumulative urine L/R. We confirm that exercising in hot ambient conditions increases intestinal epithelial permeability immediately after exercise, while consuming carbohydrate or protein immediately before and during exercise attenuates this. We recommend using our dual sugar absorption test protocol to maximise intestinal epithelial permeability data collection in exercise gastroenterology research and beyond.


Asunto(s)
Trastornos de Estrés por Calor , Lactulosa , Humanos , Lactulosa/orina , Ramnosa/orina , Estudios de Seguimiento , Carbohidratos , Permeabilidad , Absorción Intestinal/fisiología
15.
Immunol Cell Biol ; 101(9): 805-828, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37650498

RESUMEN

Dysregulation of innate immune responses can result in chronic inflammatory conditions. Glucocorticoids, the current frontline therapy, are effective immunosuppressive drugs but come with a trade-off of cumulative and serious side effects. Therefore, alternative drug options with improved safety profiles are urgently needed. Sulforaphane, a phytochemical derived from plants of the brassica family, is a potent inducer of phase II detoxification enzymes via nuclear factor-erythroid factor 2-related factor 2 (NRF2) signaling. Moreover, a growing body of evidence suggests additional diverse anti-inflammatory properties of sulforaphane through interactions with mediators of key signaling pathways and inflammatory cytokines. Multiple studies support a role for sulforaphane as a negative regulator of nuclear factor kappa-light chain enhancer of activated B cells (NF-κB) activation and subsequent cytokine release, inflammasome activation and direct regulation of the activity of macrophage migration inhibitory factor. Significantly, studies have also highlighted potential steroid-sparing activity for sulforaphane, suggesting that it may have potential as an adjunctive therapy for some inflammatory conditions. This review discusses published research on sulforaphane, including proposed mechanisms of action, and poses questions for future studies that might help progress our understanding of the potential clinical applications of this intriguing molecule.


Asunto(s)
Antiinflamatorios , Isotiocianatos , Isotiocianatos/farmacología , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Sulfóxidos , Transducción de Señal
16.
Food Funct ; 14(13): 5962-5976, 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37306209

RESUMEN

An elevated postprandial glycaemic response is a risk factor for developing type 2 diabetes mellitus (T2DM). Inhibition of digestive enzymes, including membrane-bound brush-border α-glucosidases, leads to slowed carbohydrate digestion and absorption, and reduced postprandial glycaemia. Nuts are eaten widely around the world, and have the potential to inhibit α-glucosidases through their content of polyphenols and other bioactive compounds. We set out to conduct a systematic literature review exploring the inhibitory effect of extracts from edible parts of various nuts on α-glucosidase activity in vitro to ensure, as far as possible, that no papers were missed. After an initial screening, 38 studies were reviewed in full, of which 15 were suitable for the present systematic review. Notably, no studies were found which tested the inhibitory potential of nut extracts against human α-glucosidases. Two studies showed that extracts from almonds and hazelnuts inhibited rat α-glucosidase activity, but the remaining papers reported data on the yeast α-glucosidase enzyme. Where yeast and rat enzymes can be compared, it is clear that nut extracts inhibit yeast α-glucosidase more strongly than mammalian α-glucosidase, which may lead to over-estimation when predicting effects in vivo when using data from the yeast enzyme. In contrast, acarbose is a stronger inhibitor of mammalian α-glucosidase compared to the yeast enzyme. Thus, although the present review indicates that extracts from nuts inhibit yeast α-glucosidase, this cannot be extrapolated to humans in vivo. There is some evidence that extracts from almonds and hazelnuts inhibit rat α-glucosidase, but no information on human enzyme sources. Since most work has been published on the yeast enzyme, future work in vitro must utilise mammalian, and preferably human, α-glucosidases in order to be relevant to human health and disease. This systematic review was registered at INPLASY as INPLASY202280061.


Asunto(s)
Diabetes Mellitus Tipo 2 , Hiperglucemia , Ratas , Humanos , Animales , alfa-Glucosidasas , Inhibidores de Glicósido Hidrolasas/farmacología , Nueces , Saccharomyces cerevisiae , Extractos Vegetales/farmacología , alfa-Amilasas , Hipoglucemiantes/farmacología , Mamíferos
17.
Front Nutr ; 10: 1127729, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36969812

RESUMEN

Background: There is a need to better understand the relationship between the diet, the gut microbiota and mental health. Metabolites produced when the human gut microbiota metabolize amino acids may enter the bloodstream and have systemic effects. We hypothesize that fermentation of amino acids by a resistant protein-primed gut microbiota could yield potentially toxic metabolites and disturb the availability of neurotransmitter precursors to the brain. However, these mechanisms are challenging to investigate via typical in vitro and clinical methods. Methods: We developed a novel workflow using 14C radiolabeling to investigate complex nutrient-disease relationships. The first three steps of the workflow are reported here. α-Linolenic acid (ALA) was used as a model nutrient to confirm the efficacy of the workflow, and tyrosine (Tyr) was the test nutrient. 14C-Tyr was administered to male weanling pigs fed a high resistant protein diet, which primed the gut microbiota for fermenting protein. The hypotheses were; (1) that expected biodistribution of 14C-ALA would be observed, and (2) that radioactivity from 14C-Tyr, representing Tyr and other amino acids released from resistant protein following gut microbial fermentation, would be bioavailable to the brain. Results: Radioactivity from the 14C-ALA was detected in tissues reflecting normal utilization of this essential fatty acid. Radioactivity from the 14C-Tyr was detected in the brain (0.15% of original dose). Conclusion: Metabolites of gut-fermented protein and specifically amino acid precursors to neurotransmitters such as tyrosine, are potentially able to affect brain function. By extension, resistant proteins in the diet reaching the gut microbiota, also have potential to release metabolites that can potentially affect brain function. The high specificity of detection of 14C radioactivity demonstrates that the proposed workflow can similarly be applied to understand other key diet and health paradigms.

18.
Crit Rev Food Sci Nutr ; 63(14): 2178-2202, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-34496701

RESUMEN

Citrus fruits are a rich source of (poly)phenols, a group of dietary bioactive compounds that protect against developing type 2 diabetes. Our review critically evaluates how experimental in vitro and animal models have elucidated some of the underlying mechanisms on how citrus (poly)phenols affect the markers of type 2 diabetes. According to animal studies, the beneficial effects derived from consuming citrus compounds appear to be related to long-term effects, rather than acute. There are some notable effects from citrus (poly)phenol metabolites on post-absorptive processes, such as modulation of hepatic glucose metabolism and insulin sensitivity in target tissues, but with a more modest effect on digestion and sugar absorption within the gut. Experimental studies on cells and other systems in vitro have indicated some of the possible mechanisms involved, but ∼70% of the studies utilized unrealistically high concentrations and forms of the compounds, compromising physiological relevance. Future studies should discuss the relevance of concentration used in in vitro experiments, relative to the proposed site of action, and also examine the role of catabolites produced by the gut microbiota. Finally, it is important to examine the relationship between the gut microbiota and bioavailability on the action of citrus (poly)phenols.


Asunto(s)
Citrus , Diabetes Mellitus Tipo 2 , Animales , Polifenoles/farmacología , Polifenoles/metabolismo , Diabetes Mellitus Tipo 2/prevención & control , Fenoles/farmacología , Fenoles/metabolismo , Dieta
19.
Compr Rev Food Sci Food Saf ; 21(6): 4509-4545, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36183163

RESUMEN

Evidence from in vitro, animal, and human studies links citrus fruit consumption with several health-promoting effects. However, many in vitro studies disregard bioavailability data, a key factor determining responses in humans. Citrus (poly)phenol metabolism and bioavailability follow specific pathways that vary widely among individuals and are affected by several intrinsic (age, sex, gut microbiota, metabolic state, genetic polymorphisms) and extrinsic (food matrix, co-consumed food, (poly)phenol solubility, dose, food processing, lifestyle) factors. The gut microbiota is crucial to both absorption of citrus (poly)phenols and the production of catabolites, and absorption of both takes place mostly in the colon. Citrus (poly)phenol absorption can reach up to 100% in some individuals when the sum of the gut microbiota products are taken into account. This review emphasizes the importance of understanding citrus (poly)phenol absorption, metabolism, and bioavailability using evidence primarily derived from human studies in designing in vitro, animal, and further human clinical studies.


Asunto(s)
Citrus , Polifenoles , Animales , Humanos , Disponibilidad Biológica , Fenol , Fenoles
20.
Crit Rev Food Sci Nutr ; : 1-58, 2022 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-36226718

RESUMEN

ω-Phenyl-alkenoic acids are abundant in coffee, fruits, and vegetables. Along with ω-phenyl-alkanoic acids, they are produced from numerous dietary (poly)phenols and aromatic amino acids in vivo. This review addresses how phenyl-ring substitution and flux modulates their gut microbiota and endogenous ß-oxidation. 3',5'-Dihydroxy-derivatives (from alkyl-resorcinols, flavanols, proanthocyanidins), and 4'-hydroxy-phenolic acids (from tyrosine, p-coumaric acid, naringenin) are ß-oxidation substrates yielding benzoic acids. In contrast, 3',4',5'-tri-substituted-derivatives, 3',4'-dihydroxy-derivatives and 3'-methoxy-4'-hydroxy-derivatives (from coffee, tea, cereals, many fruits and vegetables) are poor ß-oxidation substrates with metabolism diverted via gut microbiota dehydroxylation, phenylvalerolactone formation and phase-2 conjugation, possibly a strategy to conserve limited pools of coenzyme A. 4'-Methoxy-derivatives (citrus fruits) or 3',4'-dimethoxy-derivatives (coffee) are susceptible to hepatic "reverse" hydrogenation suggesting incompatibility with enoyl-CoA-hydratase. Gut microbiota-produced 3'-hydroxy-4'-methoxy-derivatives (citrus fruits) and 3'-hydroxy-derivatives (numerous (poly)phenols) are excreted as the phenyl-hydracrylic acid ß-oxidation intermediate suggesting incompatibility with hydroxy-acyl-CoA dehydrogenase, albeit with considerable inter-individual variation. Further investigation is required to explain inter-individual variation, factors determining the amino acid to which C6-C3 and C6-C1 metabolites are conjugated, the precise role(s) of l-carnitine, whether glycine might be limiting, and whether phenolic acid-modulation of ß-oxidation explains how phenolic acids affect key metabolic conditions, such as fatty liver, carbohydrate metabolism and insulin resistance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...