Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 4678, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824167

RESUMEN

Catalysts based on palladium are among the most effective in the complete oxidation of methane. Despite extensive studies and notable advances, the nature of their catalytically active species and conceivable structural dynamics remains only partially understood. Here, we combine operando transmission electron microscopy (TEM) with near-ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) and density functional theory (DFT) calculations to investigate the active state and catalytic function of Pd nanoparticles (NPs) under methane oxidation conditions. We show that the particle size, phase composition and dynamics respond appreciably to changes in the gas-phase chemical potential. In combination with mass spectrometry (MS) conducted simultaneously with in situ observations, we uncover that the catalytically active state exhibits phase coexistence and oscillatory phase transitions between Pd and PdO. Aided by DFT calculations, we provide a rationale for the observed redox dynamics and demonstrate that the emergence of catalytic activity is related to the dynamic interplay between coexisting phases, with the resulting strained PdO having more favorable energetics for methane oxidation.

2.
Sci Rep ; 14(1): 3999, 2024 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-38369606

RESUMEN

The application of hydrogen proton exchange membrane fuel cells (PEMFC) in greenhouse gas emission free heavy-duty vehicles requires extremely durable PEMFC components with service lives in the range of 30,000 h. Hence suitable test and analysis methods are required that reflect realistic operation scenarios, but significantly accelerate aging. For this purpose, a dynamic accelerated stress test was developed, which is coupled with a comprehensive in-depth in-situ and ex-situ analysis program to determine the aging processes of a PEMFC membrane electrode assembly (MEA). The test comprehends dynamic cycling between low, moderate and high load, different temperature and humidity conditions as well as recovery sequences to distinguish between reversible and irreversible failure modes. All phases of the PEMFC system (i.e. solid, liquid and gaseous) are monitored on-line during aging by sophisticated electrochemical, mass spectrometric and ion chromatographic analytical methods. The structural and elemental composition of the MEA before and after the aging program (post-mortem) are investigated by X-ray fluorescence, scanning and transmission electron microscopy. This program was able to age a commercial PEMFC to end-of-life in 1000 h, while providing an accurate picture of the aging processes involved.

3.
Small Methods ; : e2301247, 2024 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-38183406

RESUMEN

Additive microfabrication processes based on localized electroplating enable the one-step deposition of micro-scale metal structures with outstanding performance, e.g., high electrical conductivity and mechanical strength. They are therefore evaluated as an exciting and enabling addition to the existing repertoire of microfabrication technologies. Yet, electrochemical processes are generally restricted to conductive or semiconductive substrates, precluding their application in the manufacturing of functional electric devices where direct deposition onto insulators is often required. Here, the direct, localized electrodeposition of copper on a variety of insulating substrates, namely Al2 O3 , glass and flexible polyethylene, is demonstrated, enabled by electron-beam-induced reduction in a highly confined liquid electrolyte reservoir. The nanometer-size of the electrolyte reservoir, fed by electrohydrodynamic ejection, enables a minimal feature size on the order of 200 nm. The fact that the transient reservoir is established and stabilized by electrohydrodynamic ejection rather than specialized liquid cells can offer greater flexibility toward deposition on arbitrary substrate geometries and materials. Installed in a low-vacuum scanning electron microscope, the setup further allows for operando, nanoscale observation and analysis of the manufacturing process.

4.
Nat Mater ; 23(3): 331-338, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37537355

RESUMEN

The properties of two-dimensional (2D) van der Waals materials can be tuned through nanostructuring or controlled layer stacking, where interlayer hybridization induces exotic electronic states and transport phenomena. Here we describe a viable approach and underlying mechanism for the assisted self-assembly of twisted layer graphene. The process, which can be implemented in standard chemical vapour deposition growth, is best described by analogy to origami and kirigami with paper. It involves the controlled induction of wrinkle formation in single-layer graphene with subsequent wrinkle folding, tearing and re-growth. Inherent to the process is the formation of intertwined graphene spirals and conversion of the chiral angle of 1D wrinkles into a 2D twist angle of a 3D superlattice. The approach can be extended to other foldable 2D materials and facilitates the production of miniaturized electronic components, including capacitors, resistors, inductors and superconductors.

5.
Chem Sci ; 14(44): 12739-12746, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38020386

RESUMEN

Propane Dehydrogenation is a key technology, where Pt-based catalysts have widely been investigated in industry and academia, with development exploring the use of promoters (Sn, Zn, Ga, etc.) and additives (Na, K, Ca, Si, etc.) towards improved catalytic performances. Recent studies have focused on the role of Ga promotion: while computations suggest that Ga plays a key role in enhancing catalytic selectivity and stability of PtGa catalysts through Pt-site isolation as well as morphological changes, experimental evidence are lacking because of the use of oxide supports that prevent more detailed investigation. Here, we develop a methodology to generate Pt and PtGa nanoparticles with tailored interfaces on carbon supports by combining surface organometallic chemistry (SOMC) and specific thermolytic molecular precursors containing or not siloxide ligands. This approach enables the preparation of supported nanoparticles, exhibiting or not an oxide interface, suitable for state-of-the art electron microscopy and XANES characterization. We show that the introduction of Ga enables the formation of homogenously alloyed, amorphous PtGa nanoparticles, in sharp contrast to highly crystalline monometallic Pt nanoparticles. Furthermore, the presence of an oxide interface is shown to stabilize the formation of small particles, at the expense of propene selectivity loss (formation of cracking side-products, methane/ethene), explaining the use of additives such as Na, K and Ca in industrial catalysts.

6.
Sci Adv ; 8(49): eabq5751, 2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36490336

RESUMEN

Atom-by-atom control of a catalyst surface is a central yet challenging topic in heterogeneous catalysis, which enables precisely confined adsorption and oriented approach of reactant molecules. Here, exposed surfaces with either consecutive Pd trimers (Pd3) or isolated Pd atoms (Pd1) are architected for Pd2Ga intermetallic nanoparticles (NPs) using reactive metal-support interaction (RMSI). At elevated temperatures under hydrogen, in situ atomic-scale transmission electron microscopy directly visualizes the refacetting of Pd2Ga NPs from energetically favorable (013)/(020) facets to (011)/(002). Infrared spectroscopy and acetylene hydrogenation reaction complementarily confirm the evolution from consecutive Pd3 to Pd1 sites of Pd2Ga catalysts with the concurrent fingerprinting CO adsorption and featured reactivities. Through theoretical calculations and modeling, we reveal that the restructured Pd2Ga surface results from the preferential arrangement of additionally reduced Ga atoms on the surface. Our work provides previously unidentified mechanistic insight into temperature-promoted RMSI and possible solutions to control and rearrange the surface atoms of supported intermetallic catalyst.

7.
ACS Nano ; 2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36469418

RESUMEN

Hydrogen spillover from metal nanoparticles to oxides is an essential process in hydrogenation catalysis and other applications such as hydrogen storage. It is important to understand how far this process is reaching over the surface of the oxide. Here, we present a combination of advanced sample fabrication of a model system and in situ X-ray photoelectron spectroscopy to disentangle local and far-reaching effects of hydrogen spillover in a platinum-ceria catalyst. At low temperatures (25-100 °C and 1 mbar H2) surface O-H formed by hydrogen spillover on the whole ceria surface extending microns away from the platinum, leading to a reduction of Ce4+ to Ce3+. This process and structures were strongly temperature dependent. At temperatures above 150 °C (at 1 mbar H2), O-H partially disappeared from the surface due to its decreasing thermodynamic stability. This resulted in a ceria reoxidation. Higher hydrogen pressures are likely to shift these transition temperatures upward due to the increasing chemical potential. The findings reveal that on a catalyst containing a structure capable to promote spillover, hydrogen can affect the whole catalyst surface and be involved in catalysis and restructuring.

8.
ACS Nano ; 15(11): 17895-17906, 2021 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-34730325

RESUMEN

Alloy catalysts often show superior effectiveness in the growth of carbon nanotubes/nanofibers (CNTs/CNFs) as compared to monometallic catalysts. However, due to the lack of an understanding of the active state and active structure, the origin of the superior performance of alloy catalysts is unknown. In this work, we report an in situ transmission electron microscopy (TEM) study of the CNF growth enabled by one of the most active known alloy catalysts, i.e., Ni-Co, providing insights into the active state and the interaction between Ni and Co in the working catalyst. We reveal that the functioning catalyst is highly dynamic, undergoing constant reshaping and periodic elongation/contraction. Atomic-scale imaging combined with in situ electron energy-loss spectroscopy further identifies the active structure as a Ni-Co metallic alloy (face-centered cubic, FCC). Aided by the molecular dynamics simulation and density functional theory calculations, we rationalize the dynamic behavior of the catalyst and the growth mechanism of CNFs and provide insight into the origin of the superior performance of the Ni-Co alloy catalyst.

9.
Adv Mater ; 33(31): e2101772, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34117665

RESUMEN

Metal catalysts play an important role in industrial redox reactions. Although extensively studied, the state of these catalysts under operating conditions is largely unknown, and assignments of active sites remain speculative. Herein, an operando transmission electron microscopy study is presented, which interrelates the structural dynamics of redox metal catalysts to their activity. Using hydrogen oxidation on copper as an elementary redox reaction, it is revealed how the interaction between metal and the surrounding gas phase induces complex structural transformations and drives the system from a thermodynamic equilibrium toward a state controlled by the chemical dynamics. Direct imaging combined with the simultaneous detection of catalytic activity provides unparalleled structure-activity insights that identify distinct mechanisms for water formation and reveal the means by which the system self-adjusts to changes of the gas-phase chemical potential. Density functional theory calculations show that surface phase transitions are driven by chemical dynamics even when the system is far from a thermodynamic phase boundary. In a bottom-up approach, the dynamic behavior observed here for an elementary reaction is finally extended to more relevant redox reactions and other metal catalysts, which underlines the importance of chemical dynamics for the formation and constant re-generation of transient active sites during catalysis.

10.
Small ; 17(11): e2005700, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33619871

RESUMEN

Multiferroic materials demonstrating coexistence of magnetic and ferroelectric orders are promising candidates for magnetoelectric devices. While understanding the underlying mechanism of interplaying of ferroic properties is important, tailoring their properties to make them potential candidates for magnetoelectric devices is challenging. Here, the antiferromagnetic Neel ordering temperature above 200 K is realized in successfully stabilized epitaxial films of (Lu,Sc)FeO3 multiferroic oxide. The first-principles calculations show the shrinkage of in-plane lattice constants of the unit cells of the films on different substrates which corroborates well the enhancement of the Neel ordering temperature (TN ). The profound effect of lattice strain/stress at the interface due to differences of in-plane lattice constants on out of plane magnetic properties and on spin reorientation temperature in the antiferromagnetic region is further elucidated in the epitaxial films with and without buffer layer of Mn-doped LuFeO3 . Writing and reading ferroelectric domains reveal the ferroelectric response of the films at room temperature. Detailed electron microscopy shows the presence of lattice defects in atomic scale. First-principles calculations show that orbital rehybridization of rare-earth ions and oxygen is one of the main driving force of ferroelectricity along c-axis in thin films of hexagonal ferrites.

11.
Angew Chem Int Ed Engl ; 60(6): 3254-3260, 2021 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-33137235

RESUMEN

Synthesizing high-quality two-dimensional nanomaterials of nonlayered metal oxide is a challenge, especially when long-range single-crystallinity and clean high-energy surfaces are required. Reported here is the synthesis of single-crystalline MgO(111) nanosheets by a two-step process involving the formation of ultrathin Mg(OH)2 nanosheets as a precursor, and their selective topotactic conversion upon heating under dynamic vacuum. The defect-rich surface displays terminal -OH groups, three-coordinated O2- sites and low-coordinated Mg2+ sites, as well as single electrons trapped at oxygen vacancies, which render the MgO nanosheets highly reactive, as evidenced by the activation of CO molecules at low temperatures and pressures with formation of strongly adsorbed red-shifted CO and coupling of CO molecules into C2 species.

12.
Nat Commun ; 11(1): 3324, 2020 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-32620829

RESUMEN

Light elements in the interstitial site of transition metals have strong influence on heterogeneous catalysis via either expression of surface structures or even direct participation into reaction. Interstitial atoms are generally metastable with a strong environmental dependence, setting up giant challenges in controlling of heterogeneous catalysis. Herein, we show that the desired carbon atoms can be manipulated within nickel (Ni) lattice for improving the selectivity in acetylene hydrogenation reaction. The radius of octahedral space of Ni is expanded from 0.517 to 0.524 Å via formation of Ni3Zn, affording the dissociated carbon atoms to readily dissolve and diffuse at mild temperatures. Such incorporated carbon atoms coordinate with the surrounding Ni atoms for generation of Ni3ZnC0.7 and thereof inhibit the formation of subsurface hydrogen structures. Thus, the selectivity and stability are dramatically improved, as it enables suppressing the pathway of ethylene hydrogenation and restraining the accumulation of carbonaceous species on surface.

13.
Nat Commun ; 11(1): 3220, 2020 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-32591532

RESUMEN

Heterogeneous catalysts play a pivotal role in the chemical industry. The strong metal-support interaction (SMSI), which affects the catalytic activity, is a phenomenon researched for decades. However, detailed mechanistic understanding on real catalytic systems is lacking. Here, this surface phenomenon was studied on an actual platinum-titania catalyst by state-of-the-art in situ electron microscopy, in situ X-ray photoemission spectroscopy and in situ X-ray diffraction, aided by density functional theory calculations, providing a novel real time view on how the phenomenon occurs. The migration of reduced titanium oxide, limited in thickness, and the formation of an alloy are competing mechanisms during high temperature reduction. Subsequent exposure to oxygen segregates the titanium from the alloy, and a thicker titania overlayer forms. This role of oxygen in the formation process and stabilization of the overlayer was not recognized before. It provides new application potential in catalysis and materials science.

14.
Materials (Basel) ; 13(12)2020 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-32560385

RESUMEN

Common methods to produce supported catalysts include impregnation, precipitation, and thermal spray techniques. Supported electrocatalysts produced by a novel method for thermal spray deposition were investigated with respect to their structural properties, elemental composition, and electrochemical performance. This was done using electron microscopy, X-ray photoelectron spectroscopy, and cyclic voltammetry. Various shapes and sizes of catalyst particles were found. The materials exhibit different activity towards oxidation and reduction of Fe. The results show that this preparation method enables the selection of particle coverage as well as size and shape of the catalyst material. Due to the great variability of support and catalyst materials accessible with this technique, this approach is a useful extension to other preparation methods for electrocatalysts.

15.
Nanoscale ; 12(31): 16462-16473, 2020 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-32478776

RESUMEN

The effect of NaNO3 and its physical state on the thermal decomposition pathways of hydrated magnesium hydroxycarbonate (hydromagnesite, HM) towards MgO was examined by in situ total scattering. Pair distribution function (PDF) analysis of these data allowed us to probe the structural evolution of pristine and NaNO3-promoted HM. A multivariate curve resolution alternating least squares (MCR-ALS) analysis identified the intermediate phases and their evolution upon the decomposition of both precursors to MgO. The total scattering results are discussed in relation with thermogravimetric measurements coupled with off-gas analysis. MgO is obtained from pristine HM (N2, 10 °C min-1) through an amorphous magnesium carbonate intermediate (AMC), formed after the partial removal of water of crystallization from HM. The decomposition continues via a gradual release of water (due to dehydration and dehydroxylation) and, in the last step, via decarbonation, leading to crystalline MgO. The presence of molten NaNO3 alters the decomposition pathways of HM, proceeding now through AMC and crystalline MgCO3. These results demonstrate that molten NaNO3 facilitates the release of water (from both water of crystallization and through dehydroxylation) and decarbonation, and promotes the crystallization of MgCO3 and MgO in comparison to pristine HM. MgO formed from the pristine HM precursor shows a smaller average crystallite size than NaNO3-promoted HM and preserves the initial nano-plate-like morphology of HM. NaNO3-promoted HM was decomposed to MgO that is characterized by a larger average crystallite size and irregular morphology. Additionally, in situ SEM allowed visualization of the morphological evolution of HM promoted with NaNO3 at a micrometre scale.

16.
ACS Nano ; 14(2): 1902-1918, 2020 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-32031780

RESUMEN

Wafer-scale monocrystalline two-dimensional (2D) materials can theoretically be grown by seamless coalescence of individual domains into a large single crystal. Here we present a concise study of the coalescence behavior of crystalline 2D films using a combination of complementary in situ methods. Direct observation of overlayer growth from the atomic to the millimeter scale and under model- and industrially relevant growth conditions reveals the influence of the film-substrate interaction on the crystallinity of the 2D film. In the case of weakly interacting substrates, the coalescence behavior is dictated by the inherent growth kinetics of the 2D film. It is shown that the merging of coaligned domains leads to a distinct modification of the growth dynamics through the formation of fast-growing high-energy edges. The latter can be traced down to a reduced kink-creation energy at the interface between well-aligned domains. In the case of strongly interacting substrates, the lattice mismatch between film and substrate induces a pronounced moiré corrugation that determines the growth and coalescence behavior. It furthermore imposes additional criteria for seamless coalescence and determines the structure of grain boundaries. The experimental findings, obtained here for the case of graphene, are confirmed by theory-based growth simulations and can be generalized to other 2D materials that show 3- or 6-fold symmetry. Based on the gained understanding of the relation between film-substrate interaction, shape evolution, and coalescence behavior, conditions for seamless coalescence and, thus, for the optimization of large-scale production of monocrystalline 2D materials are established.

17.
Nat Nanotechnol ; 15(4): 289-295, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31959931

RESUMEN

High-quality AB-stacked bilayer or multilayer graphene larger than a centimetre has not been reported. Here, we report the fabrication and use of single-crystal Cu/Ni(111) alloy foils with controllable concentrations of Ni for the growth of large-area, high-quality AB-stacked bilayer and ABA-stacked trilayer graphene films by chemical vapour deposition. The stacking order, coverage and uniformity of the graphene films were evaluated by Raman spectroscopy and transmission electron microscopy including selected area electron diffraction and atomic resolution imaging. Electrical transport (carrier mobility and band-gap tunability) and thermal conductivity (the bilayer graphene has a thermal conductivity value of about 2,300 W m-1 K-1) measurements indicated the superior quality of the films. The tensile loading response of centimetre-scale bilayer graphene films supported by a 260-nm thick polycarbonate film was measured and the average values of the Young's modulus (478 GPa) and fracture strength (3.31 GPa) were obtained.

18.
Nano Lett ; 19(8): 5380-5387, 2019 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-31369275

RESUMEN

Understanding the growth mechanism of carbon nanotubes (CNTs) has been long pursued since its discovery. With recent integration of in situ techniques into the study of CNT growth, important insights about the growth mechanism of CNT have been generated, which have improved our understanding significantly. However, previous in situ experiments were mainly conducted at low pressures which were far from the practical conditions. Direct information about the growth dynamics under relevant conditions is still absent and thus is highly desirable. In this work, we report atomic-scale observations of multiwalled CNT (MWCNT) growth and termination at near ambient pressure by in situ transmission electron microscopy. On the basis of the real-time imaging, we are able to reveal that the working catalyst is constantly reshaping at its apex during catalyzing CNT growth, whereas at the base the catalyst remains faceted and barely shows any morphological change. The active catalyst is identified as crystalline Fe3C, based on lattice fringes that can be imaged during growth. However, the oscillatory growth behavior of the CNT and the structural dynamics of the apex area strongly indicate that the carbon concentration in the catalyst particle is fluctuating during the course of CNT growth. Extended observations further reveal that the catalyst splitting can occur: whereas the majority of the catalyst stays at the base and continues catalyzing CNT growth, a small portion of it gets trapped inside of the growing nanotube. The catalyst splitting can take place multiple times, leading to shrinkage of both, catalyst size and diameter of CNT, and finally the growth termination of CNT due to the full coverage of the catalyst by carbon layers. Additionally, in situ observations show two more scenarios for the growth termination, that is, out-migration of the catalyst from the growing nanotube induced by (i) Oswald ripening and (ii) weakened adhesion strength between the catalyst and CNT.

19.
J Am Chem Soc ; 141(34): 13497-13505, 2019 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-31322870

RESUMEN

We report an operando examination of a model nanocrystalline In2O3 catalyst for methanol synthesis via CO2 hydrogenation (300 °C, 20 bar) by combining X-ray absorption spectroscopy (XAS), X-ray powder diffraction (XRD), and in situ transmission electron microscopy (TEM). Three distinct catalytic regimes are identified during CO2 hydrogenation: activation, stable performance, and deactivation. The structural evolution of In2O3 nanoparticles (NPs) with time on stream (TOS) followed by XANES-EXAFS-XRD associates the activation stage with a minor decrease of the In-O coordination number and a partial reduction of In2O3 due to the formation of oxygen vacancy sites (i.e., In2O3-x). As the reaction proceeds, a reductive amorphization of In2O3 NPs takes place, characterized by decreasing In-O and In-In coordination numbers and intensities of the In2O3 Bragg peaks. A multivariate analysis of the XANES data confirms the formation of In2O3-x and, with TOS, metallic In. Notably, the appearance of molten In0 coincides with the onset of catalyst deactivation. This phase transition is also visualized by in situ TEM, acquired under reactive conditions at 800 mbar pressure. In situ TEM revealed an electron beam assisted transformation of In2O3 nanoparticles into a dynamic structure in which crystalline and amorphous phases coexist and continuously interconvert. The regeneration of the deactivated In0/In2O3-x catalyst by reoxidation was critically assessed revealing that the spent catalyst can be reoxidized only partially in a CO2 atmosphere or air yielding an average crystallite size of the resultant In2O3 that is approximately an order of magnitude larger than the initial one.

20.
Angew Chem Int Ed Engl ; 58(26): 8709-8713, 2019 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-31066962

RESUMEN

The direct conversion of syngas to ethanol, typically using promoted Rh catalysts, is a cornerstone reaction in CO2 utilization and hydrogen storage technologies. A rational catalyst development requires a detailed structural understanding of the activated catalyst and the role of promoters in driving chemoselectivity. Herein, we report a comprehensive atomic-scale study of metal-promoter interactions in silica-supported Rh, Rh-Mn, and Rh-Mn-Fe catalysts by aberration-corrected (AC) TEM. While the catalytic reaction leads to the formation of a Rh carbide phase in the Rh-Mn/SiO2 catalyst, the addition of Fe results in the formation of bimetallic Rh-Fe alloys, which further improves the selectivity and prevents the carbide formation. In all promoted catalysts, Mn is present as an oxide decorating the metal particles. Based on the atomic insight obtained, structural and electronic modifications induced by promoters are revealed and a basis for refined theoretical models is provided.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...