RESUMEN
Reelin, a large extracellular protein, plays several critical roles in brain development and function. It is encoded by RELN, first identified as the gene disrupted in the reeler mouse, a classic neurological mutant exhibiting ataxia, tremors and a 'reeling' gait. In humans, biallelic variants in RELN have been associated with a recessive lissencephaly variant with cerebellar hypoplasia, which matches well with the homozygous mouse mutant that has abnormal cortical structure, small hippocampi and severe cerebellar hypoplasia. Despite the large size of the gene, only 11 individuals with RELN-related lissencephaly with cerebellar hypoplasia from six families have previously been reported. Heterozygous carriers in these families were briefly reported as unaffected, although putative loss-of-function variants are practically absent in the population (probability of loss of function intolerance = 1). Here we present data on seven individuals from four families with biallelic and 13 individuals from seven families with monoallelic (heterozygous) variants of RELN and frontotemporal or temporal-predominant lissencephaly variant. Some individuals with monoallelic variants have moderate frontotemporal lissencephaly, but with normal cerebellar structure and intellectual disability with severe behavioural dysfunction. However, one adult had abnormal MRI with normal intelligence and neurological profile. Thorough literature analysis supports a causal role for monoallelic RELN variants in four seemingly distinct phenotypes including frontotemporal lissencephaly, epilepsy, autism and probably schizophrenia. Notably, we observed a significantly higher proportion of loss-of-function variants in the biallelic compared to the monoallelic cohort, where the variant spectrum included missense and splice-site variants. We assessed the impact of two canonical splice-site variants observed as biallelic or monoallelic variants in individuals with moderately affected or normal cerebellum and demonstrated exon skipping causing in-frame loss of 46 or 52 amino acids in the central RELN domain. Previously reported functional studies demonstrated severe reduction in overall RELN secretion caused by heterozygous missense variants p.Cys539Arg and p.Arg3207Cys associated with lissencephaly suggesting a dominant-negative effect. We conclude that biallelic variants resulting in complete absence of RELN expression are associated with a consistent and severe phenotype that includes cerebellar hypoplasia. However, reduced expression of RELN remains sufficient to maintain nearly normal cerebellar structure. Monoallelic variants are associated with incomplete penetrance and variable expressivity even within the same family and may have dominant-negative effects. Reduced RELN secretion in heterozygous individuals affects only cortical structure whereas the cerebellum remains intact. Our data expand the spectrum of RELN-related neurodevelopmental disorders ranging from lethal brain malformations to adult phenotypes with normal brain imaging.
Asunto(s)
Lisencefalia , Proteína Reelina , Adulto , Cerebelo/anomalías , Niño , Discapacidades del Desarrollo/genética , Humanos , Lisencefalia/complicaciones , Mutación , Malformaciones del Sistema Nervioso , Proteína Reelina/genéticaRESUMEN
The conserved transport protein particle (TRAPP) complexes regulate key trafficking events and are required for autophagy. TRAPPC4, like its yeast Trs23 orthologue, is a core component of the TRAPP complexes and one of the essential subunits for guanine nucleotide exchange factor activity for Rab1 GTPase. Pathogenic variants in specific TRAPP subunits are associated with neurological disorders. We undertook exome sequencing in three unrelated families of Caucasian, Turkish and French-Canadian ethnicities with seven affected children that showed features of early-onset seizures, developmental delay, microcephaly, sensorineural deafness, spastic quadriparesis and progressive cortical and cerebellar atrophy in an effort to determine the genetic aetiology underlying neurodevelopmental disorders. All seven affected subjects shared the same identical rare, homozygous, potentially pathogenic variant in a non-canonical, well-conserved splice site within TRAPPC4 (hg19:chr11:g.118890966A>G; TRAPPC4: NM_016146.5; c.454+3A>G). Single nucleotide polymorphism array analysis revealed there was no haplotype shared between the tested Turkish and Caucasian families suggestive of a variant hotspot region rather than a founder effect. In silico analysis predicted the variant to cause aberrant splicing. Consistent with this, experimental evidence showed both a reduction in full-length transcript levels and an increase in levels of a shorter transcript missing exon 3, suggestive of an incompletely penetrant splice defect. TRAPPC4 protein levels were significantly reduced whilst levels of other TRAPP complex subunits remained unaffected. Native polyacrylamide gel electrophoresis and size exclusion chromatography demonstrated a defect in TRAPP complex assembly and/or stability. Intracellular trafficking through the Golgi using the marker protein VSVG-GFP-ts045 demonstrated significantly delayed entry into and exit from the Golgi in fibroblasts derived from one of the affected subjects. Lentiviral expression of wild-type TRAPPC4 in these fibroblasts restored trafficking, suggesting that the trafficking defect was due to reduced TRAPPC4 levels. Consistent with the recent association of the TRAPP complex with autophagy, we found that the fibroblasts had a basal autophagy defect and a delay in autophagic flux, possibly due to unsealed autophagosomes. These results were validated using a yeast trs23 temperature sensitive variant that exhibits constitutive and stress-induced autophagic defects at permissive temperature and a secretory defect at restrictive temperature. In summary we provide strong evidence for pathogenicity of this variant in a member of the core TRAPP subunit, TRAPPC4 that associates with vesicular trafficking and autophagy defects. This is the first report of a TRAPPC4 variant, and our findings add to the growing number of TRAPP-associated neurological disorders.
Asunto(s)
Autofagia/genética , Anomalías Craneofaciales/genética , Fibroblastos/metabolismo , Proteínas del Tejido Nervioso/genética , Trastornos del Neurodesarrollo/genética , Proteínas de Transporte Vesicular/genética , Atrofia , Cerebelo/diagnóstico por imagen , Cerebelo/patología , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/patología , Niño , Preescolar , Anomalías Craneofaciales/diagnóstico por imagen , Sordera/genética , Sordera/fisiopatología , Discapacidades del Desarrollo/genética , Discapacidades del Desarrollo/fisiopatología , Epilepsia/genética , Epilepsia/fisiopatología , Femenino , Pérdida Auditiva Sensorineural/genética , Pérdida Auditiva Sensorineural/fisiopatología , Humanos , Lactante , Recién Nacido , Discapacidad Intelectual/genética , Discapacidad Intelectual/fisiopatología , Masculino , Microcefalia/genética , Microcefalia/fisiopatología , Microscopía Fluorescente , Espasticidad Muscular/genética , Espasticidad Muscular/fisiopatología , Trastornos del Neurodesarrollo/fisiopatología , Linaje , Cuadriplejía/genética , Cuadriplejía/fisiopatología , Sitios de Empalme de ARN/genética , SíndromeRESUMEN
Neuroligin 1 (NLGN1) is one of five members of the neuroligin gene family and may represent a candidate gene for neurological disorders, as members of this family are involved in formation and remodeling of central nervous system synapses. NLGN1 is expressed predominantly in the central nervous system, where it dimerizes and then binds with ß-neurexin to form a functional synapse. Mutations in neurexin 1 (NRXN1) as well as two other members of the neuroligin family, NLGN3 and NLGN4, have been associated with autism and mutations in NLGN4 have also been associated with intellectual disability, seizures, and EEG abnormalities. Genomic microarray is recommended for the detection of chromosomal gains or losses in patients with intellectual disability and multiple congenital anomalies. Results of uncertain significance are not uncommon. Parental studies can provide additional information by demonstrating that the imbalance is either de novo or inherited, and therefore is more or less likely to be causative of the clinical phenotype. However, the possibility that even inherited deletions and duplications may play a role in the phenotype of the proband cannot be excluded as many copy number variants associated with neurodevelopmental conditions show incomplete penetrance and may be inherited from an unaffected parent. Here, we report on a patient with a 2.2 Mb deletion at 3q26.3-3q26.32-encompassing the terminal end of NLGN1 and the entire NAALADL2 gene-detected by genomic microarray, and confirmed by FISH and real-time quantitative PCR. The same size deletion was subsequently found in her healthy, asymptomatic, adult mother.
Asunto(s)
Moléculas de Adhesión Celular Neuronal/genética , Deleción Cromosómica , Epilepsia/genética , Discapacidad Intelectual/genética , Microcefalia/genética , Anomalías Múltiples/genética , Niño , Femenino , Genómica , Humanos , Hibridación Fluorescente in Situ , Imagen por Resonancia Magnética , Análisis por Micromatrices , Mutación , Fenotipo , Población BlancaRESUMEN
Mosaic trisomy 20 is one of the more common cytogenetic abnormalities found on amniocentesis or chorionic villus sampling. Studies have shown that outcome is normal in 90-93% of prenatally diagnosed cases. There are however, reports in the literature of children with mosaic trisomy 20 described as having an assortment of dysmorphic features and varying levels of developmental delay. Unfortunately, the literature has not defined a specific phenotype for this entity. Here we report on three patients with mosaic trisomy 20, two of whom were identified prenatally. Over a number of years of follow-up it has become apparent that there are some striking similarities among the three. Comparison between our patients and the literature cases indicates a more consistent phenotype than has previously been suggested. Recurring features include; spinal abnormalities (including spinal stenosis, vertebral fusion, and kyphosis), hypotonia, lifelong constipation, sloped shoulders, and significant learning disabilities despite normal intelligence. These findings may be overlooked on routine history and physical exam or assumed to be standard pediatric problems. It is not our intention to suggest that there is a distinctive face for this entity but to suggest that a subtle phenotype does exist. We have attempted to identify a set of findings for which any child diagnosed with mosaic trisomy 20 should be assessed or followed even in the presence of an apparently normal physical exam at birth.