Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38187634

RESUMEN

Recent studies have identified over one hundred high-confidence (hc) autism spectrum disorder (ASD) genes. Systems biological and functional analyses on smaller subsets of these genes have consistently implicated excitatory neurogenesis. However, the extent to which the broader set of hcASD genes are involved in this process has not been explored systematically nor have the biological pathways underlying this convergence been identified. Here, we leveraged CROP-Seq to repress 87 hcASD genes in a human in vitro model of cortical neurogenesis. We identified 17 hcASD genes whose repression significantly alters developmental trajectory and results in a common cellular state characterized by disruptions in proliferation, differentiation, cell cycle, microtubule biology, and RNA-binding proteins (RBPs). We also characterized over 3,000 differentially expressed genes, 286 of which had expression profiles correlated with changes in developmental trajectory. Overall, we uncovered transcriptional disruptions downstream of hcASD gene perturbations, correlated these disruptions with distinct differentiation phenotypes, and reinforced neurogenesis, microtubule biology, and RBPs as convergent points of disruption in ASD.

2.
bioRxiv ; 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38076945

RESUMEN

Translating high-confidence (hc) autism spectrum disorder (ASD) genes into viable treatment targets remains elusive. We constructed a foundational protein-protein interaction (PPI) network in HEK293T cells involving 100 hcASD risk genes, revealing over 1,800 PPIs (87% novel). Interactors, expressed in the human brain and enriched for ASD but not schizophrenia genetic risk, converged on protein complexes involved in neurogenesis, tubulin biology, transcriptional regulation, and chromatin modification. A PPI map of 54 patient-derived missense variants identified differential physical interactions, and we leveraged AlphaFold-Multimer predictions to prioritize direct PPIs and specific variants for interrogation in Xenopus tropicalis and human forebrain organoids. A mutation in the transcription factor FOXP1 led to reconfiguration of DNA binding sites and altered development of deep cortical layer neurons in forebrain organoids. This work offers new insights into molecular mechanisms underlying ASD and describes a powerful platform to develop and test therapeutic strategies for many genetically-defined conditions.

3.
Development ; 150(14)2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-37366052

RESUMEN

Gene ontology analyses of high-confidence autism spectrum disorder (ASD) risk genes highlight chromatin regulation and synaptic function as major contributors to pathobiology. Our recent functional work in vivo has additionally implicated tubulin biology and cellular proliferation. As many chromatin regulators, including the ASD risk genes ADNP and CHD3, are known to directly regulate both tubulins and histones, we studied the five chromatin regulators most strongly associated with ASD (ADNP, CHD8, CHD2, POGZ and KMT5B) specifically with respect to tubulin biology. We observe that all five localize to microtubules of the mitotic spindle in vitro in human cells and in vivo in Xenopus. Investigation of CHD2 provides evidence that mutations present in individuals with ASD cause a range of microtubule-related phenotypes, including disrupted localization of the protein at mitotic spindles, cell cycle stalling, DNA damage and cell death. Lastly, we observe that ASD genetic risk is significantly enriched among tubulin-associated proteins, suggesting broader relevance. Together, these results provide additional evidence that the role of tubulin biology and cellular proliferation in ASD warrants further investigation and highlight the pitfalls of relying solely on annotated gene functions in the search for pathological mechanisms.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Humanos , Trastorno Autístico/genética , Trastorno Autístico/complicaciones , Trastorno Autístico/metabolismo , Cromatina/metabolismo , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/patología , Tubulina (Proteína)/metabolismo , Histonas/metabolismo , Microtúbulos/metabolismo , Huso Acromático/metabolismo
4.
Nat Rev Neurosci ; 23(6): 323-341, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35440779

RESUMEN

More than a hundred genes have been identified that, when disrupted, impart large risk for autism spectrum disorder (ASD). Current knowledge about the encoded proteins - although incomplete - points to a very wide range of developmentally dynamic and diverse biological processes. Moreover, the core symptoms of ASD involve distinctly human characteristics, presenting challenges to interpreting evolutionarily distant model systems. Indeed, despite a decade of striking progress in gene discovery, an actionable understanding of pathobiology remains elusive. Increasingly, convergent neuroscience approaches have been recognized as an important complement to traditional uses of genetics to illuminate the biology of human disorders. These methods seek to identify intersection among molecular-level, cellular-level and circuit-level functions across multiple risk genes and have highlighted developing excitatory neurons in the human mid-gestational prefrontal cortex as an important pathobiological nexus in ASD. In addition, neurogenesis, chromatin modification and synaptic function have emerged as key potential mediators of genetic vulnerability. The continued expansion of foundational 'omics' data sets, the application of higher-throughput model systems and incorporating developmental trajectories and sex differences into future analyses will refine and extend these results. Ultimately, a systems-level understanding of ASD genetic risk holds promise for clarifying pathobiology and advancing therapeutics.


Asunto(s)
Trastorno del Espectro Autista , Neurociencias , Trastorno del Espectro Autista/genética , Femenino , Genómica , Humanos , Masculino , Neurogénesis , Neuronas
5.
Cold Spring Harb Protoc ; 2022(3)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34531330

RESUMEN

Combining the power of Xenopus developmental biology with CRISPR-based technologies promises great discoveries in understanding and treating human genetic disorders. Here we provide a practical pipeline for how to go from known disease gene(s) or risk gene(s) of interest to methods for gaining functional insight into the contribution of these genes to disorder etiology in humans.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Animales , Sistemas CRISPR-Cas/genética , Edición Génica/métodos , Humanos , Xenopus laevis/genética
6.
Commun Biol ; 4(1): 1261, 2021 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-34737378

RESUMEN

Simultaneous longitudinal imaging across multiple conditions and replicates has been crucial for scientific studies aiming to understand biological processes and disease. Yet, imaging systems capable of accomplishing these tasks are economically unattainable for most academic and teaching laboratories around the world. Here, we propose the Picroscope, which is the first low-cost system for simultaneous longitudinal biological imaging made primarily using off-the-shelf and 3D-printed materials. The Picroscope is compatible with standard 24-well cell culture plates and captures 3D z-stack image data. The Picroscope can be controlled remotely, allowing for automatic imaging with minimal intervention from the investigator. Here, we use this system in a range of applications. We gathered longitudinal whole organism image data for frogs, zebrafish, and planaria worms. We also gathered image data inside an incubator to observe 2D monolayers and 3D mammalian tissue culture models. Using this tool, we can measure the behavior of entire organisms or individual cells over long-time periods.


Asunto(s)
Imagenología Tridimensional/métodos , Mamíferos , Planarias , Xenopus , Pez Cebra , Animales , Conducta Animal , Mamíferos/fisiología , Organoides/fisiología , Planarias/anatomía & histología , Planarias/fisiología , Xenopus/anatomía & histología , Xenopus/fisiología , Pez Cebra/anatomía & histología , Pez Cebra/fisiología
7.
Development ; 148(21)2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34739029

RESUMEN

Genome editing simplifies the generation of new animal models for congenital disorders. However, the detailed and unbiased phenotypic assessment of altered embryonic development remains a challenge. Here, we explore how deep learning (U-Net) can automate segmentation tasks in various imaging modalities, and we quantify phenotypes of altered renal, neural and craniofacial development in Xenopus embryos in comparison with normal variability. We demonstrate the utility of this approach in embryos with polycystic kidneys (pkd1 and pkd2) and craniofacial dysmorphia (six1). We highlight how in toto light-sheet microscopy facilitates accurate reconstruction of brain and craniofacial structures within X. tropicalis embryos upon dyrk1a and six1 loss of function or treatment with retinoic acid inhibitors. These tools increase the sensitivity and throughput of evaluating developmental malformations caused by chemical or genetic disruption. Furthermore, we provide a library of pre-trained networks and detailed instructions for applying deep learning to the reader's own datasets. We demonstrate the versatility, precision and scalability of deep neural network phenotyping on embryonic disease models. By combining light-sheet microscopy and deep learning, we provide a framework for higher-throughput characterization of embryonic model organisms. This article has an associated 'The people behind the papers' interview.


Asunto(s)
Aprendizaje Profundo , Desarrollo Embrionario/genética , Fenotipo , Animales , Anomalías Craneofaciales/embriología , Anomalías Craneofaciales/genética , Anomalías Craneofaciales/patología , Modelos Animales de Enfermedad , Procesamiento de Imagen Asistido por Computador , Ratones , Microscopía , Mutación , Redes Neurales de la Computación , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/patología , Enfermedades Renales Poliquísticas/embriología , Enfermedades Renales Poliquísticas/genética , Enfermedades Renales Poliquísticas/patología , Proteínas de Xenopus/genética , Xenopus laevis
8.
Cell Syst ; 12(11): 1094-1107.e6, 2021 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-34411509

RESUMEN

Patients with neurodevelopmental disorders, including autism, have an elevated incidence of congenital heart disease, but the extent to which these conditions share molecular mechanisms remains unknown. Here, we use network genetics to identify a convergent molecular network underlying autism and congenital heart disease. This network is impacted by damaging genetic variants from both disorders in multiple independent cohorts of patients, pinpointing 101 genes with shared genetic risk. Network analysis also implicates risk genes for each disorder separately, including 27 previously unidentified genes for autism and 46 for congenital heart disease. For 7 genes with shared risk, we create engineered disruptions in Xenopus tropicalis, confirming both heart and brain developmental abnormalities. The network includes a family of ion channels, such as the sodium transporter SCN2A, linking these functions to early heart and brain development. This study provides a road map for identifying risk genes and pathways involved in co-morbid conditions.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Cardiopatías Congénitas , Trastorno del Espectro Autista/genética , Trastorno Autístico/genética , Cardiopatías Congénitas/genética , Humanos
10.
Cold Spring Harb Protoc ; 2021(10)2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-33827967

RESUMEN

A major advantage of experimentation in Xenopus is the ability to query the localization of endogenous proteins and RNAs in situ in the entire animal during all of development. Here I describe three variations of staining to visualize mRNAs and proteins in developing Xenopus embryos and tadpoles. The first section outlines a traditional colorimetric staining for mRNAs that is suitable for all stages of development, and the second extends this protocol for fluorescence-based detection for higher spatial and quantitative resolution. The final section details detection of proteins by immunofluorescence, optimized for tadpole stages but widely applicable to others. Finally, optimization strategies are provided.


Asunto(s)
ARN , Animales , Técnica del Anticuerpo Fluorescente , Hibridación in Situ , Larva/genética , Larva/metabolismo , ARN/genética , ARN/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Xenopus laevis/metabolismo
11.
Neuron ; 109(5): 788-804.e8, 2021 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-33497602

RESUMEN

Gene Ontology analyses of autism spectrum disorders (ASD) risk genes have repeatedly highlighted synaptic function and transcriptional regulation as key points of convergence. However, these analyses rely on incomplete knowledge of gene function across brain development. Here we leverage Xenopus tropicalis to study in vivo ten genes with the strongest statistical evidence for association with ASD. All genes are expressed in developing telencephalon at time points mapping to human mid-prenatal development, and mutations lead to an increase in the ratio of neural progenitor cells to maturing neurons, supporting previous in silico systems biological findings implicating cortical neurons in ASD vulnerability, but expanding the range of convergent functions to include neurogenesis. Systematic chemical screening identifies that estrogen, via Sonic hedgehog signaling, rescues this convergent phenotype in Xenopus and human models of brain development, suggesting a resilience factor that may mitigate a range of ASD genetic risks.


Asunto(s)
Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/fisiopatología , Corteza Cerebral/crecimiento & desarrollo , Estrógenos/fisiología , Neurogénesis , Animales , Trastorno del Espectro Autista/patología , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/patología , Evaluación Preclínica de Medicamentos , Estrógenos/administración & dosificación , Femenino , Regulación del Desarrollo de la Expresión Génica , Humanos , Masculino , Factores de Riesgo , Transducción de Señal , Xenopus
12.
Genesis ; 59(1-2): e23405, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33369095

RESUMEN

From its long history in the field of embryology to its recent advances in genetics, Xenopus has been an indispensable model for understanding the human brain. Foundational studies that gave us our first insights into major embryonic patterning events serve as a crucial backdrop for newer avenues of investigation into organogenesis and organ function. The vast array of tools available in Xenopus laevis and Xenopus tropicalis allows interrogation of developmental phenomena at all levels, from the molecular to the behavioral, and the application of CRISPR technology has enabled the investigation of human disorder risk genes in a higher-throughput manner. As the only major tetrapod model in which all developmental stages are easily manipulated and observed, frogs provide the unique opportunity to study organ development from the earliest stages. All of these features make Xenopus a premier model for studying the development of the brain, a notoriously complex process that demands an understanding of all stages from fertilization to organogenesis and beyond. Importantly, core processes of brain development are conserved between Xenopus and human, underlining the advantages of this model. This review begins by summarizing discoveries made in amphibians that form the cornerstones of vertebrate neurodevelopmental biology and goes on to discuss recent advances that have catapulted our understanding of brain development in Xenopus and in relation to human development and disease. As we engage in a new era of patient-driven gene discovery, Xenopus offers exceptional potential to uncover conserved biology underlying human brain disorders and move towards rational drug design.


Asunto(s)
Encéfalo/fisiología , Modelos Animales de Enfermedad , Neurogénesis , Xenopus laevis/fisiología , Animales , Encéfalo/embriología , Encéfalo/patología , Xenopus laevis/embriología , Xenopus laevis/genética
14.
Development ; 147(21)2020 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-32467234

RESUMEN

DYRK1A [dual specificity tyrosine-(Y)-phosphorylation-regulated kinase 1 A] is a high-confidence autism risk gene that encodes a conserved kinase. In addition to autism, individuals with putative loss-of-function variants in DYRK1A exhibit microcephaly, intellectual disability, developmental delay and/or congenital anomalies of the kidney and urinary tract. DYRK1A is also located within the critical region for Down syndrome; therefore, understanding the role of DYRK1A in brain development is crucial for understanding the pathobiology of multiple developmental disorders. To characterize the function of this gene, we used the diploid frog Xenopus tropicalis We discover that Dyrk1a is expressed in ciliated tissues, localizes to ciliary axonemes and basal bodies, and is required for ciliogenesis. We also demonstrate that Dyrk1a localizes to mitotic spindles and that its inhibition leads to decreased forebrain size, abnormal cell cycle progression and cell death during brain development. These findings provide hypotheses about potential mechanisms of pathobiology and underscore the utility of X. tropicalis as a model system for understanding neurodevelopmental disorders.


Asunto(s)
Encéfalo/anatomía & histología , Cilios/metabolismo , Embrión no Mamífero/anatomía & histología , Trastornos del Neurodesarrollo/genética , Organogénesis/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Tirosina Quinasas/genética , Proteínas de Xenopus/genética , Xenopus/embriología , Xenopus/genética , Animales , Encéfalo/embriología , Ciclo Celular/genética , Supervivencia Celular , Regulación del Desarrollo de la Expresión Génica , Predisposición Genética a la Enfermedad , Tamaño de los Órganos , Fenotipo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Factores de Riesgo , Huso Acromático/metabolismo , Telencéfalo/anatomía & histología , Proteínas de Xenopus/metabolismo
16.
Genet Med ; 21(12): 2755-2764, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31263215

RESUMEN

PURPOSE: Haploinsufficiency of DYRK1A causes a recognizable clinical syndrome. The goal of this paper is to investigate congenital anomalies of the kidney and urinary tract (CAKUT) and genital defects (GD) in patients with DYRK1A variants. METHODS: A large database of clinical exome sequencing (ES) was queried for de novo DYRK1A variants and CAKUT/GD phenotypes were characterized. Xenopus laevis (frog) was chosen as a model organism to assess Dyrk1a's role in renal development. RESULTS: Phenotypic details and variants of 19 patients were compiled after an initial observation that one patient with a de novo pathogenic variant in DYRK1A had GD. CAKUT/GD data were available from 15 patients, 11 of whom presented with CAKUT/GD. Studies in Xenopus embryos demonstrated that knockdown of Dyrk1a, which is expressed in forming nephrons, disrupts the development of segments of embryonic nephrons, which ultimately give rise to the entire genitourinary (GU) tract. These defects could be rescued by coinjecting wild-type human DYRK1A RNA, but not with DYRK1AR205* or DYRK1AL245R RNA. CONCLUSION: Evidence supports routine GU screening of all individuals with de novo DYRK1A pathogenic variants to ensure optimized clinical management. Collectively, the reported clinical data and loss-of-function studies in Xenopus substantiate a novel role for DYRK1A in GU development.


Asunto(s)
Discapacidad Intelectual/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Tirosina Quinasas/genética , Anomalías Urogenitales/genética , Adolescente , Adulto , Animales , Niño , Preescolar , Bases de Datos Genéticas , Modelos Animales de Enfermedad , Exoma/genética , Femenino , Haploinsuficiencia/genética , Humanos , Discapacidad Intelectual/complicaciones , Riñón/anomalías , Riñón/embriología , Masculino , Nefronas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Sistema Urinario/embriología , Sistema Urinario/metabolismo , Secuenciación del Exoma/métodos , Xenopus laevis/genética , Xenopus laevis/metabolismo , Adulto Joven , Quinasas DyrK
17.
Dev Biol ; 442(2): 276-287, 2018 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-30096282

RESUMEN

Microtubule remodeling is critical for cellular and developmental processes underlying morphogenetic changes and for the formation of many subcellular structures. Katanins are conserved microtubule severing enzymes that are essential for spindle assembly, ciliogenesis, cell division, and cellular motility. We have recently shown that a related protein, Katanin-like 2 (KATNAL2), is similarly required for cytokinesis, cell cycle progression, and ciliogenesis in cultured mouse cells. However, its developmental expression pattern, localization, and in vivo role during organogenesis have yet to be characterized. Here, we used Xenopus embryos to reveal that Katnal2 (1) is expressed broadly in ciliated and neurogenic tissues throughout embryonic development; (2) is localized to basal bodies, ciliary axonemes, centrioles, and mitotic spindles; and (3) is required for ciliogenesis and brain development. Since human KATNAL2 is a risk gene for autism spectrum disorders, our functional data suggest that Xenopus may be a relevant system for understanding the relationship of mutations in this gene to autism and the underlying molecular mechanisms of pathogenesis.


Asunto(s)
Encéfalo/embriología , Encéfalo/metabolismo , Katanina/metabolismo , Animales , Ciclo Celular/fisiología , División Celular/fisiología , Cilios/metabolismo , Embrión no Mamífero , Desarrollo Embrionario , Microtúbulos/metabolismo , Huso Acromático/metabolismo , Xenopus/embriología , Xenopus/metabolismo , Proteínas de Xenopus/metabolismo
18.
Elife ; 52016 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-26974344

RESUMEN

A fundamental question of biology is what determines organ size. Despite demonstrations that factors within organs determine their sizes, intrinsic size control mechanisms remain elusive. Here we show that Drosophila wing size is regulated by JNK signaling during development. JNK is active in a stripe along the center of developing wings, and modulating JNK signaling within this stripe changes organ size. This JNK stripe influences proliferation in a non-canonical, Jun-independent manner by inhibiting the Hippo pathway. Localized JNK activity is established by Hedgehog signaling, where Ci elevates dTRAF1 expression. As the dTRAF1 homolog, TRAF4, is amplified in numerous cancers, these findings provide a new mechanism for how the Hedgehog pathway could contribute to tumorigenesis, and, more importantly, provides a new strategy for cancer therapies. Finally, modulation of JNK signaling centers in developing antennae and legs changes their sizes, suggesting a more generalizable role for JNK signaling in developmental organ size control.


Asunto(s)
Drosophila/embriología , Regulación del Desarrollo de la Expresión Génica , Sistema de Señalización de MAP Quinasas , Alas de Animales/embriología , Alas de Animales/crecimiento & desarrollo , Animales , Antenas de Artrópodos/embriología , Antenas de Artrópodos/crecimiento & desarrollo , Drosophila/metabolismo , Extremidades/embriología , Extremidades/crecimiento & desarrollo , Organogénesis , Alas de Animales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA