RESUMEN
This paper demonstrates that Cu2O nanoparticles form in the early stages of a solution-phase synthesis of copper nanowires, and aggregate to form the seeds from which copper nanowires grow. Removal of ethylenediamine from the synthesis leads to the rapid formation of Cu2O octahedra. These octahedra are introduced as seeds in the same copper nanowire synthesis to improve the yield of copper nanowires from 12% to >55%, and to enable independent control over the length of the nanowires. Transparent conducting films are made from nanowires with different lengths to examine the effect of nanowire aspect ratio on the film performance.
RESUMEN
This communication presents a way to produce copper nanowires with aspect ratios as high as 5700 in 30 min, and describes the growth processes responsible for their formation. These nanowires were used to make transparent conducting films with a transmittance >95% at a sheet resistance <100 Ω sq(-1).
RESUMEN
Let the light shine through: A transparent film of copper nanowires was transformed into an electrocatalyst for water oxidation by electrodepostion of Ni or Co onto the surface of the nanowires. These core-shell nanowire networks exhibit electrocatalytic performance equivalent to metal oxide films of similar composition, but are several times more transparent.
RESUMEN
Reduction of Pd ions by hydroquinone in the presence of gold nanoparticles and polyvinylpyrrolidone resulted in the formation of nanoflowers with a Au core and Pd petals. Addition of HCl to the synthesis halted the reduction by hydroquinone and enabled the acquisition of snapshots of the nanoflowers at different stages of growth. TEM images of the reaction after 10 s show that the nanoflower morphology resulted from the homogeneous nucleation of Pd clusters in solution and their subsequent attachment to gold seeds coated with a thin (0.8 ± 0.1 nm) shell of Pd. UV-visible spectra also indicate Pd clusters formed in the early stages of the reaction and disappeared as the nanoflowers grew. The speed at which this reaction can be halted is useful not only for producing a variety of bimetallic nanostructures with precisely controlled dimensions and morphologies but also for understanding the growth mechanism of these structures. The ability of the AuPd core-shell structure to catalyze the Suzuki coupling reaction of iodobenzene to phenylboronic acid was probed and compared against the activity of Pd nanocubes and thin-shelled AuPd core-shell nanoparticles. The results of this study suggest that Suzuki coupling was not affected by the surface structure or subsurface composition of the nanoparticles, but instead was primarily catalyzed by molecular Pd species that leached from the nanostructures.