Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Intensive Care Med Exp ; 4(1): 17, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27342821

RESUMEN

BACKGROUND: Traumatic hemorrhagic shock (THS) is a leading cause of preventable death following severe traumatic injury. Resuscitation of THS is typically targeted at blood pressure, but the effects of such a strategy on systemic and microcirculatory flow remains unclear. Failure to restore microcirculatory perfusion has been shown to lead to poor outcomes in experimental and clinical studies. Systemic and microcirculatory variables were examined in a porcine model of complex THS, in order to investigate inter-individual variations in flow and the effect of microcirculatory perfusion on reversal of the shock state. METHODS: Baseline standard microcirculatory variables were obtained for 22 large white pigs using sublingual incident dark field (IDF) video-microscopy. All animals were subjected to a standardised hind-limb injury followed by a controlled haemorrhage of approximately 35 % of blood volume (shock phase). This was followed by 60 min of fluid resuscitation with either 0.9 % saline or component blood products and a target SBP of 80 mmHg (early resuscitation phase). All animals were then given blood products to a target SBP of 110 mmHg for 120 min (mid-resuscitation phase), and a further 100 min (late resuscitation phase). IDF readings were obtained at the midpoint of each of these phases. Cardiac output was measured using a pulmonary artery catheter. Animals were divided into above average (A) and below average (B) perfused vessel density (PVD) groups based on the lowest recorded PVD measurement taken during the shock and early resuscitation phases. RESULTS: There was minimal inter-individual variation in blood pressure but wide variation of both systemic and microcirculatory flow variables during resuscitation. During shock and early resuscitation, group A (n = 10) had a mean PVD of 10.5 (SD ± 2.5) mm/mm(2) and group B (n = 12) 5.5 (SD ± 4.1) mm/mm(2). During the later resuscitation phases, group A maintained a significantly higher PVD than group B. Group A initially had a higher cardiac output, but the difference between the groups narrowed as resuscitation progressed. At the end of resuscitation, group A had significantly lower plasma lactate, higher lactate clearance, lower standard base deficit and smaller mixed venous-arterial CO2 gradient. There was no significant difference in blood pressure between the two groups at any stage. CONCLUSION: There was a wide variation in both macro- and microcirculatory flow variables in this pressure-targeted experimental model of THS resuscitation. Early changes in microvascular perfusion appear to be key determinants in the reversal of the shock state during resuscitation. Microcirculatory flow parameters may be more reliable markers of physiological insult than pressure-based parameters and are potential targets for goal-directed resuscitation.

2.
Shock ; 44 Suppl 1: 138-48, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26177017

RESUMEN

Acute trauma coagulopathy (ATC) is seen in 30% to 40% of severely injured casualties. Early use of blood products attenuates ATC, but the timing for optimal effect is unknown. Emergent clinical practice has started prehospital deployment of blood products (combined packed red blood cells and fresh frozen plasma [PRBCs:FFP], and alternatively PRBCs alone), but this is associated with significant logistical burden and some clinical risk. It is therefore imperative to establish whether prehospital use of blood products is likely to confer benefit. This study compared the potential impact of prehospital resuscitation with (PRBCs:FFP 1:1 ratio) versus PRBCs alone versus 0.9% saline (standard of care) in a model of severe injury. Twenty-four terminally anesthetised Large White pigs received controlled soft tissue injury and controlled hemorrhage (35% blood volume) followed by a 30-min shock phase. The animals were allocated randomly to one of three treatment groups during a 60-min prehospital evacuation phase: hypotensive resuscitation (target systolic arterial pressure 80 mmHg) using either 0.9% saline (group 1, n = 9), PRBCs:FFP (group 2, n = 9), or PRBCs alone (group 3, n = 6). Following this phase, an in-hospital phase involving resuscitation to a normotensive target (110 mmHg systolic arterial blood pressure) using PRBCs:FFP was performed in all groups. There was no mortality in any group. A coagulopathy developed in group 1 (significant increase in clot initiation and dynamics shown by TEG [thromboelastography] R and K times) that persisted for 60 to 90 min into the in-hospital phase. The coagulopathy was significantly attenuated in groups 2 and 3 (P = 0.025 R time and P = 0.035 K time), which were not significantly different from each other. Finally, the volumes of resuscitation fluid required was significantly greater in group 1 compared with groups 2 and 3 (P = 0.0067) (2.8 ± 0.3 vs. 1.9 ± 0.2 and 1.8 ± 0.3 L, respectively). This difference was principally due to a greater volume of saline used in group 1 (P = 0.001). Prehospital PRBCs:FFP or PRBCs alone may therefore attenuate ATC. Furthermore, the amount of crystalloid may be reduced with potential benefit of reducing the extravasation effect and later tissue edema.


Asunto(s)
Trastornos de la Coagulación Sanguínea/sangre , Choque/sangre , Heridas y Lesiones/terapia , Anestesia , Animales , Bancos de Sangre , Coagulación Sanguínea , Modelos Animales de Enfermedad , Transfusión de Eritrocitos/métodos , Femenino , Fibrinógeno/química , Hemorragia/terapia , Tiempo de Tromboplastina Parcial , Plasma/química , Tiempo de Protrombina , Resucitación , Porcinos , Tromboelastografía , Factores de Tiempo , Heridas y Lesiones/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...