Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Extracell Vesicles ; 13(6): e12465, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38887984

RESUMEN

Exosomes are secreted vesicles made intracellularly in the endosomal system. We have previously shown that exosomes are not only made in late endosomes, but also in recycling endosomes marked by the monomeric G-protein Rab11a. These vesicles, termed Rab11a-exosomes, are preferentially secreted under nutrient stress from several cancer cell types, including HCT116 colorectal cancer (CRC) cells. HCT116 Rab11a-exosomes have particularly potent signalling activities, some mediated by the epidermal growth factor receptor (EGFR) ligand, amphiregulin (AREG). Mutant activating forms of KRAS, a downstream target of EGFR, are often found in advanced CRC. When absent, monoclonal antibodies, such as cetuximab, which target the EGFR and block the effects of EGFR ligands, such as AREG, can be administered. Patients, however, inevitably develop resistance to cetuximab, either by acquiring KRAS mutations or via non-genetic microenvironmental changes. Here we show that nutrient stress in several CRC cell lines causes the release of AREG-carrying Rab11a-exosomes. We demonstrate that while soluble AREG has no effect, much lower levels of AREG bound to Rab11a-exosomes from cetuximab-resistant KRAS-mutant HCT116 cells, can suppress the effects of cetuximab on KRAS-wild type Caco-2 CRC cells. Using neutralising anti-AREG antibodies and an intracellular EGFR kinase inhibitor, we show that this effect is mediated via AREG activation of EGFR, and not transfer of activated KRAS. Therefore, presentation of AREG on Rab11a-exosomes affects its ability to compete with cetuximab. We propose that this Rab11a-exosome-mediated mechanism contributes to the establishment of resistance in cetuximab-sensitive cells and may explain why in cetuximab-resistant tumours only some cells carry mutant KRAS.


Asunto(s)
Anfirregulina , Cetuximab , Neoplasias Colorrectales , Resistencia a Antineoplásicos , Exosomas , Proteínas de Unión al GTP rab , Humanos , Anfirregulina/metabolismo , Cetuximab/farmacología , Exosomas/metabolismo , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/tratamiento farmacológico , Proteínas de Unión al GTP rab/metabolismo , Receptores ErbB/metabolismo , Células HCT116 , Antineoplásicos Inmunológicos/farmacología , Línea Celular Tumoral , Estrés Fisiológico , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Transducción de Señal/efectos de los fármacos
2.
PLoS Genet ; 19(10): e1010979, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37844085

RESUMEN

Secretory cells in glands and the nervous system frequently package and store proteins destined for regulated secretion in dense-core granules (DCGs), which disperse when released from the cell surface. Despite the relevance of this dynamic process to diseases such as diabetes and human neurodegenerative disorders, our mechanistic understanding is relatively limited, because of the lack of good cell models to follow the nanoscale events involved. Here, we employ the prostate-like secondary cells (SCs) of the Drosophila male accessory gland to dissect the cell biology and genetics of DCG biogenesis. These cells contain unusually enlarged DCGs, which are assembled in compartments that also form secreted nanovesicles called exosomes. We demonstrate that known conserved regulators of DCG biogenesis, including the small G-protein Arf1 and the coatomer complex AP-1, play key roles in making SC DCGs. Using real-time imaging, we find that the aggregation events driving DCG biogenesis are accompanied by a change in the membrane-associated small Rab GTPases which are major regulators of membrane and protein trafficking in the secretory and endosomal systems. Indeed, a transition from trans-Golgi Rab6 to recycling endosomal protein Rab11, which requires conserved DCG regulators like AP-1, is essential for DCG and exosome biogenesis. Our data allow us to develop a model for DCG biogenesis that brings together several previously disparate observations concerning this process and highlights the importance of communication between the secretory and endosomal systems in controlling regulated secretion.


Asunto(s)
Proteínas de Drosophila , Exosomas , Animales , Humanos , Masculino , Vesículas de Núcleo Denso , Drosophila , Proteínas de Drosophila/genética , Exosomas/genética , Proteínas , Proteínas de Unión al GTP rab/genética , Factor de Transcripción AP-1
3.
PLoS Genet ; 19(6): e1010815, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37363926

RESUMEN

In prostate cancer, loss of the tumour suppressor gene, Retinoblastoma (Rb), and consequent activation of transcription factor E2F1 typically occurs at a late-stage of tumour progression. It appears to regulate a switch to an androgen-independent form of cancer, castration-resistant prostate cancer (CRPC), which frequently still requires androgen receptor (AR) signalling. We have previously shown that upon mating, binucleate secondary cells (SCs) of the Drosophila melanogaster male accessory gland (AG), which share some similarities with prostate epithelial cells, switch their growth regulation from a steroid-dependent to a steroid-independent form of Ecdysone Receptor (EcR) control. This physiological change induces genome endoreplication and allows SCs to rapidly replenish their secretory compartments, even when ecdysone levels are low because the male has not previously been exposed to females. Here, we test whether the Drosophila Rb homologue, Rbf, and E2F1 regulate this switch. Surprisingly, we find that excess Rbf activity reversibly suppresses binucleation in adult SCs. We also demonstrate that Rbf, E2F1 and the cell cycle regulators, Cyclin D (CycD) and Cyclin E (CycE), are key regulators of mating-dependent SC endoreplication, as well as SC growth in both virgin and mated males. Importantly, we show that the CycD/Rbf/E2F1 axis requires the EcR, but not ecdysone, to trigger CycE-dependent endoreplication and endoreplication-associated growth in SCs, mirroring changes seen in CRPC. Furthermore, Bone Morphogenetic Protein (BMP) signalling, mediated by the BMP ligand Decapentaplegic (Dpp), intersects with CycD/Rbf/E2F1 signalling to drive endoreplication in these fly cells. Overall, our work reveals a signalling switch, which permits rapid growth of SCs and increased secretion after mating, independently of previous exposure to females. The changes observed share mechanistic parallels with the pathological switch to hormone-independent AR signalling seen in CRPC, suggesting that the latter may reflect the dysregulation of a currently unidentified physiological process.


Asunto(s)
Proteínas de Drosophila , Neoplasias de la Próstata Resistentes a la Castración , Humanos , Animales , Femenino , Masculino , Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Próstata/patología , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/patología , Endorreduplicación , Ecdisona/genética , Ecdisona/metabolismo , Factor de Transcripción E2F1/genética , Factores de Transcripción/genética , Proteína de Retinoblastoma/genética , Proteína de Retinoblastoma/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
4.
J Extracell Vesicles ; 12(3): e12311, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36872252

RESUMEN

Exosomes are secreted nanovesicles with potent signalling activity that are initially formed as intraluminal vesicles (ILVs) in late Rab7-positive multivesicular endosomes, and also in recycling Rab11a-positive endosomes, particularly under some forms of nutrient stress. The core proteins of the Endosomal Sorting Complex Required for Transport (ESCRT) participate in exosome biogenesis and ILV-mediated destruction of ubiquitinylated cargos. Accessory ESCRT-III components have reported roles in ESCRT-III-mediated vesicle scission, but their precise functions are poorly defined. They frequently only appear essential under stress. Comparative proteomics analysis of human small extracellular vesicles revealed that accessory ESCRT-III proteins, CHMP1A, CHMP1B, CHMP5 and IST1, are increased in Rab11a-enriched exosome preparations. We show that these proteins are required to form ILVs in Drosophila secondary cell recycling endosomes, but unlike core ESCRTs, they are not involved in degradation of ubiquitinylated proteins in late endosomes. Furthermore, CHMP5 knockdown in human HCT116 colorectal cancer cells selectively inhibits Rab11a-exosome production. Accessory ESCRT-III knockdown suppresses seminal fluid-mediated reproductive signalling by secondary cells and the growth-promoting activity of Rab11a-exosome-containing EVs from HCT116 cells. We conclude that accessory ESCRT-III components have a specific, ubiquitin-independent role in Rab11a-exosome generation, a mechanism that might be targeted to selectively block pro-tumorigenic activities of these vesicles in cancer.


Asunto(s)
Exosomas , Vesículas Extracelulares , Humanos , Endosomas , Transporte Biológico , Complejos de Clasificación Endosomal Requeridos para el Transporte
5.
Pharmaceutics ; 14(4)2022 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-35456635

RESUMEN

Drug absorption following oral administration is determined by complex and dynamic interactions between gastrointestinal (GI) physiology, the drug, and its formulation. Since many of these interactions are not fully understood, the COST action on "Understanding Gastrointestinal Absorption-related Processes (UNGAP)" was initiated in 2017, with the aim to improve the current comprehension of intestinal drug absorption and foster future developments in this field. In this regard, in vivo techniques used for the characterization of human GI physiology and the intraluminal behavior of orally administered dosage forms in the GI tract are fundamental to gaining deeper mechanistic understanding of the interplay between human GI physiology and drug product performance. In this review, the potential applications, advantages, and limitations of the most important in vivo techniques relevant to oral biopharmaceutics are presented from the perspectives of different research fields.

6.
Drug Deliv Transl Res ; 12(6): 1355-1375, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34382178

RESUMEN

The delivery of drugs to the posterior segment of the eye remains a tremendously difficult task. Prolonged treatment in conventional intravitreal therapy requires injections that are administered frequently due to the rapid clearance of the drug molecules. As an alternative, intraocular implants can offer drug release for long-term therapy. However, one of the several challenges in developing intraocular implants is selecting an appropriate in vitro dissolution testing model. In order to determine the efficacy of ocular implants in drug release, multiple in vitro test models were emerging. While these in vitro models may be used to analyse drug release profiles, the findings may not predict in vivo retinal drug exposure as this is influenced by metabolic and physiological factors. This review considers various types of in vitro test methods used to test drug release of ocular implants. Importantly, it discusses the challenges and factors that must be considered in the development and testing of the implants in an in vitro setup.


Asunto(s)
Sistemas de Liberación de Medicamentos , Técnicas In Vitro , Inyecciones Intravítreas , Preparaciones Farmacéuticas , Solubilidad
7.
Eur J Pharm Sci ; 172: 106100, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-34936937

RESUMEN

This collection of contributions from the European Network on Understanding Gastrointestinal Absorption-related Processes (UNGAP) community assembly aims to provide information on some of the current and newer methods employed to study the behaviour of medicines. It is the product of interactions in the immediate pre-Covid period when UNGAP members were able to meet and set up workshops and to discuss progress across the disciplines. UNGAP activities are divided into work packages that cover special treatment populations, absorption processes in different regions of the gut, the development of advanced formulations and the integration of food and pharmaceutical scientists in the food-drug interface. This involves both new and established technical approaches in which we have attempted to define best practice and highlight areas where further research is needed. Over the last months we have been able to reflect on some of the key innovative approaches which we were tasked with mapping, including theoretical, in silico, in vitro, in vivo and ex vivo, preclinical and clinical approaches. This is the product of some of us in a snapshot of where UNGAP has travelled and what aspects of innovative technologies are important. It is not a comprehensive review of all methods used in research to study drug dissolution and absorption, but provides an ample panorama of current and advanced methods generally and potentially useful in this area. This collection starts from a consideration of advances in a priori approaches: an understanding of the molecular properties of the compound to predict biological characteristics relevant to absorption. The next four sections discuss a major activity in the UNGAP initiative, the pursuit of more representative conditions to study lumenal dissolution of drug formulations developed independently by academic teams. They are important because they illustrate examples of in vitro simulation systems that have begun to provide a useful understanding of formulation behaviour in the upper GI tract for industry. The Leuven team highlights the importance of the physiology of the digestive tract, as they describe the relevance of gastric and intestinal fluids on the behaviour of drugs along the tract. This provides the introduction to microdosing as an early tool to study drug disposition. Microdosing in oncology is starting to use gamma-emitting tracers, which provides a link through SPECT to the next section on nuclear medicine. The last two papers link the modelling approaches used by the pharmaceutical industry, in silico to Pop-PK linking to Darwich and Aarons, who provide discussion on pharmacometric modelling, completing the loop of molecule to man.


Asunto(s)
COVID-19 , Tracto Gastrointestinal , Administración Oral , Simulación por Computador , Absorción Gastrointestinal/fisiología , Tracto Gastrointestinal/metabolismo , Humanos , Absorción Intestinal , Masculino , Modelos Biológicos , Preparaciones Farmacéuticas/metabolismo , Solubilidad
9.
Nat Commun ; 12(1): 6666, 2021 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-34795295

RESUMEN

Extracellular vesicles (EVs) are biological nanoparticles with important roles in intercellular communication, and potential as drug delivery vehicles. Here we demonstrate a role for the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in EV assembly and secretion. We observe high levels of GAPDH binding to the outer surface of EVs via a phosphatidylserine binding motif (G58), which promotes extensive EV clustering. Further studies in a Drosophila EV biogenesis model reveal that GAPDH is required for the normal generation of intraluminal vesicles in endosomal compartments, and promotes vesicle clustering. Fusion of the GAPDH-derived G58 peptide to dsRNA-binding motifs enables highly efficient loading of small interfering RNA (siRNA) onto the EV surface. Such vesicles efficiently deliver siRNA to multiple anatomical regions of the brain in a Huntington's disease mouse model after systemic injection, resulting in silencing of the huntingtin gene in different regions of the brain.


Asunto(s)
Encéfalo/metabolismo , Vesículas Extracelulares/metabolismo , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Células Madre Mesenquimatosas/metabolismo , ARN Interferente Pequeño/metabolismo , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Sistemas de Liberación de Medicamentos/métodos , Vesículas Extracelulares/ultraestructura , Gliceraldehído-3-Fosfato Deshidrogenasas/genética , Células HEK293 , Células HeLa , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Células Madre Mesenquimatosas/citología , Ratones Endogámicos C57BL , Fosfatidilserinas/metabolismo , Unión Proteica , ARN Interferente Pequeño/administración & dosificación , ARN Interferente Pequeño/genética
10.
Eur J Pharm Sci ; 162: 105812, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-33753215

RESUMEN

The absorption of oral drugs is frequently plagued by significant variability with potentially serious therapeutic consequences. The source of variability can be traced back to interindividual variability in physiology, differences in special populations (age- and disease-dependent), drug and formulation properties, or food-drug interactions. Clinical evidence for the impact of some of these factors on drug pharmacokinetic variability is mounting: e.g. gastric pH and emptying time, small intestinal fluid properties, differences in pediatrics and the elderly, and surgical changes in gastrointestinal anatomy. However, the link of colonic factors variability (transit time, fluid composition, microbiome), sex differences (male vs. female) and gut-related diseases (chronic constipation, anorexia and cachexia) to drug absorption variability has not been firmly established yet. At the same time, a way to decrease oral drug pharmacokinetic variability is provided by the pharmaceutical industry: clinical evidence suggests that formulation approaches employed during drug development can decrease the variability in oral exposure. This review outlines the main drivers of oral drug exposure variability and potential approaches to overcome them, while highlighting existing knowledge gaps and guiding future studies in this area.


Asunto(s)
Absorción Intestinal , Preparaciones Farmacéuticas , Administración Oral , Anciano , Niño , Femenino , Interacciones Alimento-Droga , Tracto Gastrointestinal/metabolismo , Humanos , Masculino , Preparaciones Farmacéuticas/metabolismo , Farmacocinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...