Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Pulm Circ ; 10(3): 2045894020937134, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32670564

RESUMEN

Pulmonary hypertension (PH) is a disease associated with vasoconstriction and remodelling of the pulmonary vasculature. Pulmonary artery fibroblasts (PAFs) play an important role in hypoxic-induced remodelling. Connexin 43 (Cx43) is involved in cellular communication and regulation of the pulmonary vasculature. Using both in vitro and in vivo models of PH, the aims of this study were to (i) investigate the role of Cx43 in hypoxic-induced proliferation and migration of rat PAFs (rPAFs) and rat pulmonary artery smooth muscle cells (rPASMCs) and (ii) determine whether Cx43 expression is dysregulated in the rat sugen5416/hypoxic model of PH. The role of Cx43 in hypoxic-induced proliferation and migration was investigated using Gap27 (a pharmacological inhibitor of Cx43) or genetic knockdown of Cx43 using siRNA. Cx43 protein expression was increased by hypoxia in rPAFs but not rPASMCs. Hypoxic exposure, in the presence of serum, resulted in an increase in proliferation of rPAFs but not rPASMCs. Hypoxic exposure caused migration of rPAFs but not rPASMCs. Phosphorylation of p38 mitogen-activated protein kinase (MAPK) and ERK1/2 were increased by hypoxia in rPAFs. The effects of hypoxia on proliferation, migration and MAPK phosphorylation in rPAFs were attenuated in the presence of Gap27 or Cx43 siRNA. Cx43 protein expression was increased in sugen5416/hypoxic rat lung; this increased expression was not observed in sugen5416/hypoxic rats treated with the MAPK pathway inhibitor GS-444217. In conclusion, Cx43 is involved in the proliferation and migration of rPAFs in response to hypoxia via the MAPK signalling pathway.

2.
Pulm Circ ; 10(2): 2045894020922810, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32523684

RESUMEN

Pulmonary arterial hypertension, group 1 of the pulmonary hypertension disease family, involves pulmonary vascular remodelling, right ventricular dysfunction and cardiac failure. Oxidative stress, through activation of mitogen-activated protein kinases is implicated in these changes. Inhibition of apoptosis signal-regulating kinase 1, an apical mitogen-activated protein kinase, prevented pulmonary arterial hypertension developing in rodent models. Here, we investigate apoptosis signal-regulating kinase 1 in pulmonary arterial hypertension by examining the impact that its inhibition has on the molecular and cellular signalling in established disease. Apoptosis signal-regulating kinase 1 inhibition was investigated in in vivo pulmonary arterial hypertension and in vitro pulmonary hypertension models. In the in vivo model, male Sprague Dawley rats received a single subcutaneous injection of Sugen SU5416 (20 mg/kg) prior to two weeks of hypobaric hypoxia (380 mmHg) followed by three weeks normoxia (Sugen/hypoxic), then animals were either maintained for three weeks on control chow or one containing apoptosis signal-regulating kinase 1 inhibitor (100 mg/kg/day). Cardiovascular measurements were carried out. In the in vitro model, primary cultures of rat pulmonary artery fibroblasts and rat pulmonary artery smooth muscle cells were maintained in hypoxia (5% O2) and investigated for proliferation, migration and molecular signalling in the presence or absence of apoptosis signal-regulating kinase 1 inhibitor. Sugen/hypoxic animals displayed significant pulmonary arterial hypertension compared to normoxic controls at eight weeks. Apoptosis signal-regulating kinase 1 inhibitor decreased right ventricular systolic pressure to control levels and reduced muscularised vessels in lung tissue. Apoptosis signal-regulating kinase 1 inhibition was found to prevent hypoxia-induced proliferation, migration and cytokine release in rat pulmonary artery fibroblasts and also prevented rat pulmonary artery fibroblast-induced rat pulmonary artery smooth muscle cell migration and proliferation. Apoptosis signal-regulating kinase 1 inhibition reversed pulmonary arterial hypertension in the Sugen/hypoxic rat model. These effects may be a result of intrinsic changes in the signalling of adventitial fibroblast.

3.
Pulm Circ ; 10(1): 2045894019897513, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32095230

RESUMEN

Cardiac magnetic resonance-derived ventricular variables are predictive of mortality in pulmonary arterial hypertension. Rodent models which emphasize ventricular function, allowing serial monitoring, are needed to identify pathophysiological features and novel therapies for pulmonary arterial hypertension. We investigated longitudinal changes in the Sugen-hypoxia model during disease progression. Sprague Dawley rats (n = 32) were divided into two groups. (1) Sugen-hypoxia: a dose of subcutaneous Sugen-5416 and placed in hypobaric hypoxia for two weeks followed by normoxia for three weeks. (2) Normoxia: maintained at normal pressure for five weeks. Rats were examined at five or eight weeks with right-heart catheter, cardiac magnetic resonance, and autopsy. Compared to normoxic controls (23.9 ± 4.1 mmHg), right ventricular systolic pressure was elevated in Sugen-hypoxia rats at five and eight weeks (40.9 ± 15.5 mmHg, p = 0.026; 48.9 ± 9.6 mmHg, p = 0.002). Right ventricular end-systolic volume index was increased in eight weeks Sugen-hypoxia (0.28 ± 0.04 µlcm-2, p = 0.003) compared to normoxic controls (0.18 ±0.03 mlcm-2). There was progressive dilatation of the right ventricular at eight weeks Sugen-hypoxia compared to normoxic controls (0.75 ± 0.13 µlcm-2 vs 0.56 ± 0.1 µlcm-2 p = 0.02). Ventricle mass index by cardiac magnetic resonance at five weeks (0.34 ± 0.06, p = 0.003) and eight weeks Sugen-hypoxia (0.34 ± 0.06, p = 0.002) were higher than normoxic controls (0.21 ± 0.04). Stroke volume, right ventricular ejection fraction, and left ventricular variables were preserved in Sugen-hypoxia. Ventricular changes during the course of illness in a pulmonary arterial hypertension rodent model can be examined by cardiac magnetic resonance. These changes including right ventricular hypertrophy and subsequent dilatation are similar to those seen in pulmonary arterial hypertension patients. Despite the persisting pulmonary hypertension, there are features of adaptive cardiac remodeling through the study duration.

4.
J Cell Sci ; 128(24): 4560-71, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26542022

RESUMEN

Cyclin dependent kinase (Cdk)9 acts through the positive transcription elongation factor-b (P-TEFb) complex to activate and expand transcription through RNA polymerase II. It has also been shown to regulate cardiomyocyte hypertrophy, with recent evidence linking it to cardiomyocyte proliferation. We hypothesised that modification of CDK9 activity could both impair and enhance the cardiac response to injury by modifying cardiomyocyte proliferation. Cdk9 expression and activity were inhibited in the zebrafish (Danio rerio) embryo. We show that dephosphorylation of residue Ser2 on the C-terminal domain of RNA polymerase II is associated with impaired cardiac structure and function, and cardiomyocyte proliferation and also results in impaired functional recovery following cardiac laser injury. In contrast, de-repression of Cdk9 activity, through knockdown of La-related protein (Larp7) increases phosphorylation of Ser2 in RNA polymerase II and increases cardiomyocyte proliferation. Larp7 knockdown rescued the structural and functional phenotype associated with knockdown of Cdk9. The balance of Cdk9 and Larp7 plays a key role in cardiomyocyte proliferation and response to injury. Larp7 represents a potentially novel therapeutic target to promote cardiomyocyte proliferation and recovery from injury.


Asunto(s)
Proliferación Celular , Quinasa 9 Dependiente de la Ciclina/metabolismo , Lesiones Cardíacas/metabolismo , Miocitos Cardíacos/metabolismo , Ribonucleoproteínas/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Quinasa 9 Dependiente de la Ciclina/genética , Lesiones Cardíacas/genética , Lesiones Cardíacas/patología , Miocitos Cardíacos/patología , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Ribonucleoproteínas/genética , Pez Cebra/genética , Proteínas de Pez Cebra/genética
5.
Differentiation ; 89(5): 117-27, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26095446

RESUMEN

Heart formation is a complex, dynamic and highly coordinated process of molecular, morphogenetic and functional factors with each interacting and contributing to formation of the mature organ. Cardiac abnormalities in early life can be lethal in mammals but not in the zebrafish embryo which has been widely used to study the developing heart. While early cardiac development in the zebrafish has been well characterized, functional changes during development and how these relate to architectural, cellular and molecular aspects of development have not been well described previously. To address this we have carefully characterised cardiac structure, function, cardiomyocyte proliferation and cardiac-specific gene expression between 48 and 120 hpf in the zebrafish. We show that the zebrafish heart increases in volume and changes shape significantly between 48 and 72 hpf accompanied by a 40% increase in cardiomyocyte number. Between 96 and 120 hpf, while external heart expansion slows, there is rapid formation of a mature and extensive trabecular network within the ventricle chamber. While ejection fraction does not change during the course of development other determinants of contractile function increase significantly particularly between 72 and 96 hpf leading to an increase in cardinal vein blood flow. This study has revealed a number of novel aspects of cardiac developmental dynamics with striking temporal orchestration of structure and function within the first few days of development. These changes are associated with changes in expression of developmental and maturational genes. This study provides important insights into the complex temporal relationship between structure and function of the developing zebrafish heart.


Asunto(s)
Corazón/embriología , Organogénesis , Pez Cebra/embriología , Animales , Recuento de Células , Proliferación Celular , Embrión no Mamífero/anatomía & histología , Regulación del Desarrollo de la Expresión Génica , Corazón/anatomía & histología , Corazón/fisiología , Miocitos Cardíacos/citología
6.
PLoS One ; 9(5): e96771, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24824845

RESUMEN

The zebrafish is increasingly used for cardiovascular genetic and functional studies. We present a novel protocol to maintain and monitor whole isolated beating adult zebrafish hearts in culture for long-term experiments. Excised whole adult zebrafish hearts were transferred directly into culture dishes containing optimized L-15 Leibovitz growth medium and maintained for 5 days. Hearts were assessed daily using video-edge analysis of ventricle function using low power microscopy images. High-throughput histology techniques were used to assess changes in myocardial architecture and cell viability. Mean spontaneous Heart rate (HR, min(-1)) declined significantly between day 0 and day 1 in culture (96.7 ± 19.5 to 45.2 ± 8.2 min-1, mean ± SD, p = 0.001), and thereafter declined more slowly to 27.6 ± 7.2 min(-1) on day 5. Ventricle wall motion amplitude (WMA) did not change until day 4 in culture (day 0, 46.7 ± 13.0 µm vs day 4, 16.9 ± 1.9 µm, p = 0.08). Contraction velocity (CV) declined between day 0 and day 3 (35.6 ± 14.8 vs 15.2 ± 5.3 µms(-1), respectively, p = 0.012) while relaxation velocity (RV) declined quite rapidly (day 0, 72.5 ± 11.9 vs day 1, 29.5 ± 5.8 µms(-1), p = 0.03). HR and WMA responded consistently to isoproterenol from day 0 to day 5 in culture while CV and RV showed less consistent responses to beta-agonist. Cellular architecture and cross-striation pattern of cardiomyocytes remained unchanged up to day 3 in culture and thereafter showed significant deterioration with loss of striation pattern, pyknotic nuclei and cell swelling. Apoptotic markers within the myocardium became increasingly frequent by day 3 in culture. Whole adult zebrafish hearts can be maintained in culture-medium for up to 3 days. However, after day-3 there is significant deterioration in ventricle function and heart rate accompanied by significant histological changes consistent with cell death and loss of cardiomyocyte cell integrity. Further studies are needed to assess whether this preparation can be optimised for longer term survival.


Asunto(s)
Frecuencia Cardíaca/fisiología , Corazón/fisiología , Contracción Miocárdica/fisiología , Técnicas de Cultivo de Órganos/métodos , Pez Cebra/fisiología , Animales , Cardiotónicos/farmacología , Corazón/anatomía & histología , Corazón/efectos de los fármacos , Frecuencia Cardíaca/efectos de los fármacos , Isoproterenol/farmacología , Contracción Miocárdica/efectos de los fármacos , Miocardio/metabolismo
7.
Int J Cardiol ; 168(4): 3913-9, 2013 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-23871347

RESUMEN

BACKGROUND: While the adult zebrafish (Danio rerio) heart demonstrates a remarkable capacity for self-renewal following apical resection little is known about the response to injury in the embryonic heart. METHODS: Injury to the beating zebrafish embryo heart was induced by laser using a transgenic zebrafish expressing cardiomyocyte specific green fluorescent protein. Changes in ejection fraction (EF), heart rate (HR), and caudal vein blood flow (CVBF) assessed by video capture techniques were assessed at 2, 24 and 48 h post-laser. Change in total and mitotic ventricular cardiomyocyte number following laser injury was also assessed by counting respectively DAPI (VCt) and Phospho-histone H3 (VCm) positive nuclei in isolated hearts using confocal microscopy. RESULTS: Laser injury to the ventricle resulted in bradycardia and mild bleeding into the pericardium. At 2 h post-laser injury, there was a significant reduction in cardiac performance in lasered-hearts compared with controls (HR 117 ± 11 vs 167 ± 9 bpm, p ≤ 0.001; EF 14.1 ± 1.8 vs 20.1 ± 1.3%, p ≤ 0.001; CVBF 103 ± 15 vs 316 ± 13 µms(-1), p ≤ 0.001, respectively). Isolated hearts showed a significant reduction in VCt at 2 h post-laser compared to controls (195 ± 15 vs 238 ± 15, p ≤ 0.05). Histology showed necrosis and apoptosis (TUNEL assay) at the site of laser injury. At 24 h post-laser cardiac performance and VCt had recovered fully to control levels. Pretreatment with the cell-cycle inhibitor, aphidicolin, significantly inhibited functional recovery of the ventricle accompanied by a significant inhibition of cardiomyocyte proliferation. CONCLUSIONS: Laser-targeted injury of the zebrafish embryonic heart is a novel and reproducible model of cardiac injury and repair suitable for pharmacological and molecular studies.


Asunto(s)
Ventrículos Cardíacos/embriología , Ventrículos Cardíacos/lesiones , Terapia por Láser/efectos adversos , Modelos Animales , Animales , Animales Modificados Genéticamente , Frecuencia Cardíaca/fisiología , Ventrículos Cardíacos/patología , Terapia por Láser/métodos , Miocitos Cardíacos/patología , Volumen Sistólico/fisiología , Pez Cebra
8.
Protein Expr Purif ; 26(1): 122-30, 2002 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12356479

RESUMEN

Liposomes containing bovine heart cytochrome c oxidase (COV) prepared by the cholate dialysis technique were purified from those devoid of the enzyme using discontinuous sucrose density ultra centrifugation to eliminate interference in proton-pumping assays. This technique was also used to purify liposomes containing cytochrome c oxidase depleted in subunit III (COV-III), a COX enzyme preparation with altered subunit structure, to assess if the technique could be applied to COX enzymes in which structural and functional changes have occurred. Upon discontinuous sucrose density ultra gradient ultracentrifugation, either COV or COV-III were separated into two bands. Liposomes devoid of enzyme sedimented into the 12% sucrose layer, whereas enzyme-containing liposomes (pCOV or pCOV-III) were found in the 13% sucrose layer. The yield of both pCOV or pCOV-III was greater than 60% (based on heme aa(3) content), suggesting a similar distribution of cytochrome c oxidase (COX) and subunit III-depleted enzyme (COX-III) in the purified liposomes. The number of COX or COX-III molecules per phospholipid vesicle in purified fractions was estimated to be two. Removal of subunit III (M(r)=29,918) from COX resulted in a 30% decrease in electron transfer activity (either in COV-III or pCOV-III) when compared with COV and pCOV, respectively. Both pCOV and pCOV-III exhibited low endogenous proton permeability, as assessed by possessing high respiratory control ratios (14 and greater) and by having similar valinomycin concentration dependencies for stimulation of electron transfer activity in the presence of saturating amounts of CCCP. COV-III and pCOV-III exhibited a 39-44% decrease in proton-pumping activity when compared with COV and pCOV. These results showed that the separation of COX containing liposomes from those lacking enzyme by sucrose density gradient centrifugation can be used to characterize the biophysical properties of these liposomes.


Asunto(s)
Complejo IV de Transporte de Electrones/aislamiento & purificación , Complejo IV de Transporte de Electrones/metabolismo , Liposomas/química , Fosfolípidos/química , Animales , Bovinos , Centrifugación por Gradiente de Densidad , Transporte de Electrón , Complejo IV de Transporte de Electrones/química , Liposomas/aislamiento & purificación , Mitocondrias Cardíacas/enzimología , Protones , Sacarosa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...