Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 8775, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627427

RESUMEN

Charge-transfer excitations are of paramount importance for understanding the electronic structure of copper-oxide based high-temperature superconductors. In this study, we investigate the response of a Bi 2 Sr 2 CaCu 2 O 8 + δ crystal to the charge redistribution induced by an infrared ultrashort pulse. Element-selective time-resolved core-level photoelectron spectroscopy with a high energy resolution allows disentangling the dynamics of oxygen ions with different coordination and bonds thanks to their different chemical shifts. Our experiment shows that the O 1s component arising from the Cu-O planes is significantly perturbed by the infrared light pulse. Conversely, the apical oxygen, also coordinated with Sr ions in the Sr-O planes, remains unaffected. This result highlights the peculiar behavior of the electronic structure of the Cu-O planes. It also unlocks the way to study the out-of-equilibrium electronic structure of copper-oxide-based high-temperature superconductors by identifying the O 1s core-level emission originating from the oxygen ions in the Cu-O planes. This ability could be critical to gain information about the strongly-correlated electron ultrafast dynamical mechanisms in the Cu-O plane in the normal and superconducting phases.

2.
Sci Adv ; 10(5): eadj2407, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38295169

RESUMEN

Identifying the microscopic nature of non-equilibrium energy transfer mechanisms among electronic, spin, and lattice degrees of freedom is central to understanding ultrafast phenomena such as manipulating magnetism on the femtosecond timescale. Here, we use time- and angle-resolved photoemission spectroscopy to go beyond the often-used ensemble-averaged view of non-equilibrium dynamics in terms of quasiparticle temperature evolutions. We show for ferromagnetic Ni that the non-equilibrium electron and spin dynamics display pronounced variations with electron momentum, whereas the magnetic exchange interaction remains isotropic. This highlights the influence of lattice-mediated scattering processes and opens a pathway toward unraveling the still elusive microscopic mechanism of spin-lattice angular momentum transfer.

3.
Sci Adv ; 10(5): eadj4883, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38295181

RESUMEN

Altermagnets are an emerging elementary class of collinear magnets. Unlike ferromagnets, their distinct crystal symmetries inhibit magnetization while, unlike antiferromagnets, they promote strong spin polarization in the band structure. The corresponding unconventional mechanism of time-reversal symmetry breaking without magnetization in the electronic spectra has been regarded as a primary signature of altermagnetism but has not been experimentally visualized to date. We directly observe strong time-reversal symmetry breaking in the band structure of altermagnetic RuO2 by detecting magnetic circular dichroism in angle-resolved photoemission spectra. Our experimental results, supported by ab initio calculations, establish the microscopic electronic structure basis for a family of interesting phenomena and functionalities in fields ranging from topological matter to spintronics, which are based on the unconventional time-reversal symmetry breaking in altermagnets.

4.
Rev Sci Instrum ; 93(8): 083905, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-36050085

RESUMEN

A 790-nm-driven high-harmonic generation source with a repetition rate of 6 kHz is combined with a toroidal-grating monochromator and a high-detection-efficiency photoelectron time-of-flight momentum microscope to enable time- and momentum-resolved photoemission spectroscopy over a spectral range of 23.6-45.5 eV with sub-100 fs time resolution. Three-dimensional (3D) Fermi surface mapping is demonstrated on graphene-covered Ir(111) with energy and momentum resolutions of ≲100 meV and ≲0.1 Å-1, respectively. The tabletop experiment sets the stage for measuring the kz-dependent ultrafast dynamics of 3D electronic structure, including band structure, Fermi surface, and carrier dynamics in 3D materials as well as 3D orbital dynamics in molecular layers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...