Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
PLoS One ; 19(5): e0304491, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38805522

RESUMEN

Due to high tolerance to antibiotics and pronounced virulence, bacterial biofilms are considered a key factor and major clinical challenge in persistent wound infections. They are typically composed of multiple species, whose interactions determine the biofilm's structural development, functional properties and thus the progression of wound infections. However, most attempts to study bacterial biofilms in vitro solely rely on mono-species populations, since cultivating multi-species biofilms, especially for prolonged periods of time, poses significant challenges. To address this, the present study examined the influence of bacterial composition on structural biofilm development, morphology and spatial organization, as well as antibiotic tolerance and virulence on human skin cells in the context of persistent wound infections. By creating a wound-mimetic microenvironment, the successful cultivation of dual-species biofilms of two of the most prevalent wound pathogens, Pseudomonas aeruginosa and Staphylococcus aureus, was realized over a period of 72 h. Combining quantitative analysis with electron microscopy and label-free imaging enabled a comprehensive evaluation of the dynamics of biofilm formation and matrix secretion, revealing a twofold increased maturation of dual-species biofilms. Antibiotic tolerance was comparable for both mono-species cultures, however, dual-species communities showed a 50% increase in tolerance, mediated by a significantly reduced penetration of the applied antibiotic into the biofilm matrix. Further synergistic effects were observed, where dual-species biofilms exacerbated wound healing beyond the effects observed from either Pseudomonas or Staphylococcus. Consequently, predicting biofilm development, antimicrobial tolerance and virulence for multi-species biofilms based solely on the results from mono-species biofilms is unreliable. This study underscores the substantial impact of a multi-species composition on biofilm functional properties and emphasizes the need to tailor future studies reflecting the bacterial composition of the respective in vivo situation, leading to a more comprehensive understanding of microbial communities in the context of basic microbiology and the development of effective treatments.


Asunto(s)
Antibacterianos , Biopelículas , Pseudomonas aeruginosa , Staphylococcus aureus , Infección de Heridas , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/fisiología , Pseudomonas aeruginosa/patogenicidad , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/fisiología , Humanos , Virulencia/efectos de los fármacos , Infección de Heridas/microbiología , Infección de Heridas/tratamiento farmacológico , Antibacterianos/farmacología , Farmacorresistencia Bacteriana/efectos de los fármacos , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/tratamiento farmacológico , Pruebas de Sensibilidad Microbiana , Infecciones por Pseudomonas/microbiología , Infecciones por Pseudomonas/tratamiento farmacológico
2.
Biofilm ; 6: 100164, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38025836

RESUMEN

Approximately 80 % of persistent wound infections are affected by the presence of bacterial biofilms, resulting in a severe clinical challenge associated with prolonged healing periods, increased morbidity, and high healthcare costs. Unfortunately, in vitro models for wound infection research almost exclusively focus on early infection stages with planktonic bacteria. In this study, we present a new approach to emulate biofilm-infected human wounds by three-dimensional human in vitro systems. For this purpose, a matured biofilm consisting of the clinical key wound pathogen Pseudomonas aeruginosa was pre-cultivated on electrospun scaffolds allowing for non-destructive transfer of the matured biofilm to human in vitro wound models. We infected tissue-engineered human in vitro skin models as well as ex vivo human skin explants with the biofilm and analyzed structural tissue characteristics, biofilm growth behavior, and biofilm-tissue interactions. The structural development of biofilms in close proximity to the tissue, resulting in high bacterial burden and in vivo-like morphology, confirmed a manifest wound infection on all tested wound models, validating their applicability for general investigations of biofilm growth and structure. The extent of bacterial colonization of the wound bed, as well as the subsequent changes in molecular composition of skin tissue, were inherently linked to the characteristics of the underlying wound models including their viability and origin. Notably, the immune response observed in viable ex vivo and in vitro models was consistent with previous in vivo reports. While ex vivo models offered greater complexity and closer similarity to the in vivo conditions, in vitro models consistently demonstrated higher reproducibility. As a consequence, when focusing on direct biofilm-skin interactions, the viability of the wound models as well as their advantages and limitations should be aligned to the particular research question of future studies. Altogether, the novel model allows for a systematic investigation of host-pathogen interactions of bacterial biofilms and human wound tissue, also paving the way for development and predictive testing of novel therapeutics to combat biofilm-infected wounds.

3.
Anal Chem ; 95(48): 17646-17653, 2023 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-37989265

RESUMEN

Recently, confocal Raman microscopy has gained popularity in biomedical research for studying tissues in healthy and diseased state due to its ability to acquire chemically selective data in a noninvasive approach. However, biological samples, such as brain tissue, are inherently difficult to analyze due to the superposition of molecules in the Raman spectra and low variation of spectral features within the sample. The analysis is further impeded by pathological hallmarks, for example beta-amyloid (Aß) plaques in Alzheimer's disease, which are often solely characterized by subtle shifts in the respective Raman peaks. To unravel the underlying molecular information, convoluted statistical procedures are inevitable. Unfortunately, such statistical methods are often inadequately described, and most natural scientists lack knowledge of their appropriate use, causing unreproducible results and stagnation in the application of hyperspectral Raman imaging. Therefore, we have set out to provide a comprehensive guide to address these challenges with the example of a complex hyperspectral data set of brain tissue samples with Aß plaques. Our study encompasses established as well as novel statistical methods, including univariate analysis, principal component analysis, cluster analysis, spectral unmixing, and 2D correlation spectroscopy, and critically compares the outcomes of each analysis. Moreover, we transparently demonstrate the effect of preprocessing decisions like denoising and scaling techniques, providing valuable insights into implications of spectral quality for data evaluation. Thereby, this study provides a comprehensive evaluation of analysis approaches for complex hyperspectral Raman data, laying out a blueprint for elucidating meaningful information from biological samples in chemical imaging.


Asunto(s)
Enfermedad de Alzheimer , Espectrometría Raman , Humanos , Espectrometría Raman/métodos , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/química , Análisis por Conglomerados , Encéfalo/metabolismo , Placa Amiloide/patología
4.
Int J Pharm ; 647: 123533, 2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-37863446

RESUMEN

Thermoplastic polymers have been used to produce filaments by hot melt extrusion (HME), which can be applied to obtain 3D printlets by fused deposition modelling (FDM). Poly(ε-caprolactone) (PCL) is a low melting point thermoplastic polymer that provides HME filaments with excellent mechanical and printability properties. However, due to the highly hydrophobic properties of PCL, they afford printlets with slow drug release behaviour. We hypothesized that blending a less hydrophobic polymer, the Eudragit E (EudE), with PCL could be an approach to increase the drug release rate from PCL 3D printlets. PCL and EudE were blended at different proportions, 50:50, 60:40, 70:30, and 80:20 (w/w), to produce HME filaments. They were produced with dexamethasone at 5 % (w/w) and were effectively extruded and printable by FDM, except that composed of 50:50 (w/w). Printlets had homogeneous distribution of their components. Their drug release behaviour was dependent on the ratio of the polymeric blends. The highest EudE ratio (60:40 w/w) afforded printlets showing the highest release rate. Therefore, adding up to 40 % (w/w) of EudE to PCL does not impair the mechanical and printability properties of its HME filaments. This innovative approach is proposed here to modulate the drug release behaviour from PCL printlets.


Asunto(s)
Polímeros , Tecnología Farmacéutica , Liberación de Fármacos , Polímeros/química , Impresión Tridimensional , Comprimidos/química
5.
Int J Pharm ; 646: 123483, 2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37802258

RESUMEN

For oral delivery, the physicochemical properties of nanocarriers are decisive factors for permeation through the intestinal epithelium. These properties are determined by the composition of the nanocarriers as well as by the process parameters during their self-assembly. For macromolecular drugs, there is still little understanding of the drug-polymer interactions during nanocarrier self-assembly and the effects on carrier properties. In this study, the effect of drug molecular weight on nanocarrier self-assembly, physicochemical properties of nanocarriers as well as their permeation across the intestinal epithelium was investigated. Our results show that the drug molecular weight impacts the physicochemical properties of nanocarriers. Further, the physicochemical properties of the nanocarriers, governed by the molecular weight of the drug, determine their permeation properties across the intestinal epithelium. Comparative in vitro and ex vivo studies revealed that intestinal absorption is dependent on both, the properties of the tissue as well as properties of the carrier system. In conclusion, the molecular weight of drug payload is a key factor determining the physiochemical properties of polymeric nanocarriers and is closely linked to their oral absorption. Using different preclinical models to evaluate intestinal permeation of nanocarriers allows for novel insights into key formulation properties governing oral bioavailability.


Asunto(s)
Portadores de Fármacos , Nanopartículas , Portadores de Fármacos/química , Polímeros/química , Peso Molecular , Nanopartículas/química , Disponibilidad Biológica , Absorción Intestinal , Sistemas de Liberación de Medicamentos , Administración Oral
6.
Sci Rep ; 13(1): 8330, 2023 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-37221194

RESUMEN

The increasing incidence of infected skin wounds poses a major challenge in clinical practice, especially when conventional antibiotic therapy fails. In this context, bacteriophages emerged as promising alternatives for the treatment of antibiotic-resistant bacteria. However, clinical implementation remains hampered by the lack of efficient delivery approaches to infected wound tissue. In this study, bacteriophage-loaded electrospun fiber mats were successfully developed as next-generation wound dressings for the treatment of infected wounds. We employed a coaxial electrospinning approach, creating fibers with a protective polymer shell, enveloping bacteriophages in the core while maintaining their antimicrobial activity. The novel fibers exhibited a reproducible fiber diameter range and morphology, while the mechanical fiber properties were ideal for application onto wounds. Further, immediate release kinetics for the phages were confirmed as well as the biocompatibility of the fibers with human skin cells. Antimicrobial activity was demonstrated against Staphylococcus aureus and Pseudomonas aeruginosa and the core/shell formulation maintained the bacteriophage activity for 4 weeks when stored at - 20 °C. Based on these promising characteristics, our approach holds great potential as a platform technology for the encapsulation of bioactive bacteriophages to enable the translation of phage therapy into clinical application.


Asunto(s)
Bacteriófagos , Staphylococcus aureus Resistente a Meticilina , Nanofibras , Infección de Heridas , Humanos , Pseudomonas aeruginosa , Staphylococcus aureus , Antibacterianos
7.
ACS Nano ; 17(7): 6932-6942, 2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-36972400

RESUMEN

Polymer self-assembly leading to cooling-induced hydrogel formation is relatively rare for synthetic polymers and typically relies on H-bonding between repeat units. Here, we describe a non-H-bonding mechanism for a cooling-induced reversible order-order (sphere-to-worm) transition and related thermogelation of solutions of polymer self-assemblies. A multitude of complementary analytical tools allowed us to reveal that a significant fraction of the hydrophobic and hydrophilic repeat units of the underlying block copolymer is in close proximity in the gel state. This unusual interaction between hydrophilic and hydrophobic blocks reduces the mobility of the hydrophilic block significantly by condensing the hydrophilic block onto the hydrophobic micelle core, thereby affecting the micelle packing parameter. This triggers the order-order transition from well-defined spherical micelles to long worm-like micelles, which ultimately results in the inverse thermogelation. Molecular dynamics modeling indicates that this unexpected condensation of the hydrophilic corona onto the hydrophobic core is due to particular interactions between amide groups in the hydrophilic repeat units and phenyl rings in the hydrophobic ones. Consequently, changes in the structure of the hydrophilic blocks affecting the strength of the interaction could be used to control macromolecular self-assembly, thus allowing for the tuning of gel characteristics such as strength, persistence, and gelation kinetics. We believe that this mechanism might be a relevant interaction pattern for other polymeric materials as well as their interaction in and with biological environments. For example, controlling the gel characteristics could be considered important for applications in drug delivery or biofabrication.

8.
J Mater Chem B ; 11(14): 3212-3225, 2023 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-36951960

RESUMEN

Three-dimensional scaffolds of electrospun fibers are widely investigated for in vitro human tissue engineering, but to date, their application in the cultivation of bacterial biofilms has been neglected. In contrast, in a clinical setting, biofilms have received increasing recognition as major determinants of severe and chronic tissue infections, illustrating their immense threat to global public health. Their complex three-dimensional structure enables their persistence in harsh infection environments, tight attachment to human tissue and reduced susceptibility to antimicrobials. For the investigation of biofilm formation and persistence and for the development of novel infection therapies, mimicking the complex biofilm architecture with adequate in vitro models is essential. In this study, electrospun nanofibers were designed to simulate the matrix of native biofilms to serve as scaffolds for a novel biofilm model, which provides an in vivo-like growth environment and comprises biofilm-tissue interfaces. The three-dimensional scaffolds closely imitate the composition and structure of the matrix, while providing high mechanical support. The specific material properties of the developed scaffolds promote bacterial adhesion, infiltration, and homogenous distribution throughout the fiber network. Furthermore, matrix production and increased tolerance against antibiotics were proven, verifying adequate biofilm formation and maturation. In combination with human ex vivo wound models, the chronic state of infected wounds could be emulated allowing for investigation of biofilm-tissue interfaces and biofilm-host interactions. The here-described biofilm model based on nanofibers represents a valuable tool for simulating biofilm-associated infections in a pathophysiologically relevant manner paving new grounds for a multitude of possible applications beyond infection research.


Asunto(s)
Nanofibras , Infección de Heridas , Humanos , Nanofibras/química , Ingeniería de Tejidos/métodos , Biopelículas , Adhesión Bacteriana , Infección de Heridas/microbiología
9.
Int J Pharm X ; 5: 100153, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36632070

RESUMEN

The use of 3D printing in pharmaceutics has grown over the last years, along with the number of studies on the impact of the composition of these formulations on their pharmaceutical and biopharmaceutical properties. Recently, we reported the combined effect of the infill percentage and the presence of a pore former on the drug release behaviour of 3D printed matrix solid forms prepared by fused deposition modelling. However, there are some open questions about the effect of the drug solubility and the size of these dosage forms on their controlled release properties. Therefore, we produced poly(Ɛ-caprolactone) filaments containing different soluble forms of dexamethasone (free acid, DEX; acetate ester, DEX-A; and phosphate salt, DEX-P), which showed suitable mechanical properties and printability. 3D printed solid forms were produced in two different sizes. The formulations composed of DEX-P released about 50% of drug after 10 h, while those containing DEX or DEX-A released about 9%. The drug release profiles from the 3D printed forms containing the same drug form but with different sizes were almost completely overlapped. Therefore, these 3D printed matrix solid forms can have their drug content customised by adjusting their size, without changing their controlled release behaviour.

10.
Mol Pharm ; 20(1): 241-254, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36538353

RESUMEN

Effective therapy of wounds is difficult, especially for chronic, non-healing wounds, and novel therapeutics are urgently needed. This challenge can be addressed with bioactive wound dressings providing a microenvironment and facilitating cell proliferation and migration, ideally incorporating actives, which initiate and/or progress effective healing upon release. In this context, electrospun scaffolds loaded with growth factors emerged as promising wound dressings due to their biocompatibility, similarity to the extracellular matrix, and potential for controlled drug release. In this study, electrospun core-shell fibers were designed composed of a combination of polycaprolactone and polyethylene oxide. Insulin, a proteohormone with growth factor characteristics, was successfully incorporated into the core and was released in a controlled manner. The fibers exhibited favorable mechanical properties and a surface guiding cell migration for wound closure in combination with a high uptake capacity for wound exudate. Biocompatibility and significant wound healing effects were shown in interaction studies with human skin cells. As a new approach, analysis of the wound proteome in treated ex vivo human skin wounds clearly demonstrated a remarkable increase in wound healing biomarkers. Based on these findings, insulin-loaded electrospun wound dressings bear a high potential as effective wound healing therapeutics overcoming current challenges in the clinics.


Asunto(s)
Insulina , Nanofibras , Humanos , Cicatrización de Heridas , Sistemas de Liberación de Medicamentos , Piel , Vendajes
11.
ACS Biomater Sci Eng ; 2022 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-36562386

RESUMEN

Cyclodextrins are a group of naturally occurring oligosaccharides that have widely been studied and applied in pharmaceutical formulations forming inclusion complexes with a broad variety of drugs exhibiting different hydrophilicity as well as molecular weights. Grafting aliphatic chains onto native cyclodextrins renders them amphiphilic and enables self-assembly into supramolecular structures that have already been explored for drug delivery. Based on the possibility of controlling the inherent physicochemical properties by modifying their chemical structure, amphiphilic cyclodextrin conjugates hold a great potential to become a drug delivery platform adaptable to the individual needs of specific active drug molecules. In this work, a library of amphiphilic cyclodextrin derivatives was synthesized by conjugating aliphatic chains of different lengths to native ß-cyclodextrin via thioether or ester bonds. Upon nanoprecipitation, the synthesized amphiphilic cyclodextrin derivatives spontaneously self-assembled into nanosized supramolecular structures with a monodisperse size distribution. We systematically investigated the relationship between the molecular structure of the amphiphilic cyclodextrin derivatives and the corresponding self-assembly into nanosystems as well as the encapsulation of model drugs with different physicochemical properties. Encapsulation efficiencies up to 97% and pH-dependent release profiles were achieved. We found that both the aliphatic chain length and the linker molecule determine the respective self-assembly and drug encapsulation mechanism of the individual system. The colloidal stability and biocompatibility with human cells of all derivatives were proven. Consequently, amphiphilic cyclodextrin conjugates provide a drug delivery platform with tailor-made control over physicochemical properties and high drug encapsulation efficiency for a broad range of drug molecules, thus offering great potential for the development of future therapeutics with improved therapeutic efficiency.

12.
Eur J Pharm Biopharm ; 179: 246-255, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36150615

RESUMEN

The widespread resistance of clinically relevant bacteria against established antibiotics emphasizes the urgent need for novel therapeutics. In this context, wound infections constitute a specific challenge, as most systemically applied antibiotics are insufficiently available at the site of infection. Therefore, the local treatment of infected wounds poses a particular challenge regarding the appropriate release kinetics of actives and their residence time in the wound bed. Consequently, design and development of novel, drug-loaded wound dressings constitute a major research focus for the effective treatment of wound infections. In this study, we employed electrospinning to design drug-loaded wound dressings, incorporating the therapeutically promising antimicrobial peptide tyrothricin. By parallel electrospinning, we combined different ratios of water-soluble polyvinylpyrrolidone and water-insoluble methacrylate copolymer (EudragitE), in order to take advantage of their specific mechanical stability and dissolution properties. We fabricated fiber mats constituting mechanically stable wound dressings with a controlled drug release profile, combining an initial burst release above the minimal inhibitory concentration of known wound pathogens and a subsequent prolonged antimicrobial effect of the active ingredient. Antimicrobial activity against Staphylococcusaureus and Staphylococcusepidermidis was successfully proven, thereby introducing our tyrothricin-loaded fiber mats as a promising prospective therapy against typical wound-associated pathogens.


Asunto(s)
Nanofibras , Infección de Heridas , Humanos , Compuestos Alílicos , Antibacterianos , Péptidos Antimicrobianos , Metacrilatos , Nanofibras/química , Povidona , Sulfuros , Tirotricina/farmacología , Tirotricina/uso terapéutico , Agua , Cicatrización de Heridas , Infección de Heridas/tratamiento farmacológico
13.
J Med Chem ; 65(14): 9750-9788, 2022 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-35849534

RESUMEN

Selective manipulation of the epitranscriptome could be beneficial for the treatment of cancer and also broaden the understanding of epigenetic inheritance. Inhibitors of the tRNA methyltransferase DNMT2, the enzyme catalyzing the S-adenosylmethionine-dependent methylation of cytidine 38 to 5-methylcytidine, were designed, synthesized, and analyzed for their enzyme-binding and -inhibiting properties. For rapid screening of potential DNMT2 binders, a microscale thermophoresis assay was established. Besides the natural inhibitors S-adenosyl-l-homocysteine (SAH) and sinefungin (SFG), we identified new synthetic inhibitors based on the structure of N-adenosyl-2,4-diaminobutyric acid (Dab). Structure-activity relationship studies revealed the amino acid side chain and a Y-shaped substitution pattern at the 4-position of Dab as crucial for DNMT2 inhibition. The most potent inhibitors are alkyne-substituted derivatives, exhibiting similar binding and inhibitory potencies as the natural compounds SAH and SFG. CaCo-2 assays revealed that poor membrane permeabilities of the acids and rapid hydrolysis of an ethylester prodrug might be the reasons for the insufficient activity in cellulo.


Asunto(s)
Metiltransferasas , Neoplasias , Proteínas Arqueales , Células CACO-2 , ADN , Humanos , Neoplasias/tratamiento farmacológico , S-Adenosilhomocisteína/química , S-Adenosilhomocisteína/metabolismo , S-Adenosilhomocisteína/farmacología , S-Adenosilmetionina/metabolismo
14.
Pharmaceutics ; 14(6)2022 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-35745880

RESUMEN

The human blood-brain barrier (BBB) represents the interface of microvasculature and the central nervous system, regulating the transport of nutrients and protecting the brain from external threats. To gain a deeper understanding of (patho)physiological processes affecting the BBB, sophisticated models mimicking the in vivo situation are required. Currently, most in vitro models are cultivated on stiff, semipermeable, and non-biodegradable Transwell® membrane inserts, not adequately mimicking the complexity of the extracellular environment of the native human BBB. To overcome these disadvantages, we developed three-dimensional electrospun scaffolds resembling the natural structure of the human extracellular matrix. The polymer fibers of the scaffold imitate collagen fibrils of the human basement membrane, exhibiting excellent wettability and biomechanical properties, thus facilitating cell adhesion, proliferation, and migration. Cultivation of human induced pluripotent stem cells (hiPSCs) on these scaffolds enabled the development of a physiological BBB phenotype monitored via the formation of tight junctions and validated by the paracellular permeability of sodium fluorescein, further accentuating the non-linearity of TEER and barrier permeability. The novel in vitro model of the BBB forms a tight endothelial barrier, offering a platform to study barrier functions in a (patho)physiologically relevant context.

15.
J Control Release ; 348: 692-705, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35718212

RESUMEN

To date, buccal administration of lipophilic drugs is still a major challenge due to their poor solubility in saliva and limited penetration into mucosal tissues. To overcome these limitations, we developed electrospun patches combining the benefits of mucoadhesive fibers and self-emulsifying drug delivery systems (SEDDS). The fiber system comprises a combination of mucoadhesive thiolated polyacrylic acid fibers and SEDDS-loaded fibers fabricated by parallel electrospinning. The resulting mucoadhesive electrospun SEDDS patches were systemically investigated for fiber characteristics, self-emulsification, mucoadhesion, drug penetration into porcine buccal tissue and biocompatibility. The patches showed high encapsulation efficiency for SEDDS without causing fiber defects or leakage. SEDDS incorporation enhanced the spinning process and reduced the fiber diameter and fiber size distribution. Hydration-dependent self-emulsification provided a controlled release of curcumin being encapsulated in nano-scaled o/w emulsion for over 3 h. Due to the thiolated polyacrylic acid fibers, the buccal residence time of patches was 200-fold prolonged. Further, they promoted a significantly increased drug penetration into buccal tissue compared to fiber patches without SEDDS. Finally, biocompatibility and improved therapeutic effects of curcumin-loaded patches on human keratinocytes and fibroblasts were confirmed. Mucoadhesive electrospun SEDDS patches represent a promising approach to overcome current challenges in the oromucosal delivery of lipophilic drugs to unlock their full therapeutic potential.


Asunto(s)
Curcumina , Sistemas de Liberación de Medicamentos , Administración Bucal , Animales , Sistemas de Liberación de Medicamentos/métodos , Emulsiones , Humanos , Solubilidad , Porcinos
16.
Pharm Res ; 39(5): 935-948, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35411509

RESUMEN

PURPOSE: The quality testing and approval procedure for most pharmaceutical products is a streamlined process with standardized procedures for the determination of critical quality attributes. However, the evaluation of semisolid dosage forms for topical drug delivery remains a challenging task. The work presented here highlights confocal Raman microscopy (CRM) as a valuable tool for the characterization of such products. METHODS: CRM, a laser-based method, combining chemically-selective analysis and high resolution imaging, is used for the evaluation of different commercially available topical acyclovir creams. RESULTS: We show that CRM enables the spatially resolved analysis of microstructural features of semisolid products and provides insights into drug distribution and polymorphic state as well as the composition and arrangement of excipients. Further, we explore how CRM can be used to monitor phase separation and to study skin penetration and the interaction with fresh and cryopreserved excised human skin tissue. CONCLUSION: This study presents a comprehensive overview and illustration of how CRM can facilitate several types of key analyses of semisolid topical formulations and of their interaction with their biological target site, illustrating that CRM is a useful tool for research, development as well as for quality testing in the pharmaceutical industry.


Asunto(s)
Absorción Cutánea , Piel , Composición de Medicamentos/métodos , Excipientes/análisis , Humanos , Microscopía Confocal/métodos , Piel/metabolismo , Espectrometría Raman/métodos
17.
Pharmaceutics ; 13(10)2021 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-34684015

RESUMEN

The aim of this study was to gain deeper insight into the mass transport mechanisms controlling drug release from polymer-coated pellets using non-invasive analytical tools. Pellet starter cores loaded with verapamil HCl (10% loading, 45% lactose, 45% microcrystalline cellulose) were prepared by extrusion/spheronization and coated with 5% Kollicoat SR:IR 95:5 or 10% Kollicoat SR:IR 90:10. Drug release was measured from ensembles of pellets as well as from single pellets upon exposure to acetate buffer pH = 3.5 and phosphate buffer pH = 7.4. The swelling of single pellets was observed by optical microscopy, while dynamic changes in the pH in the pellet cores were monitored by fluorescence spectroscopy. Also, mathematical modeling using a mechanistically realistic theory as well as SEM and Raman imaging were applied to elucidate whether drug release mainly occurs by diffusion through the intact film coatings or whether crack formation in the film coatings plays a role. Interestingly, fluorescence spectroscopy revealed that the pH within the pellet cores substantially differed upon exposure to acetate buffer pH = 3.5 and phosphate buffer pH = 7.4, resulting in significant differences in drug solubility (verapamil being a weak base) and faster drug release at lower pH: from ensembles of pellets and single pellets. The monitoring of drug release from and the swelling of single pellets indicated that crack formation in the film coatings likely plays a major role, irrespective of the Kollicoat SR:IR ratio/coating level. This was confirmed by mathematical modeling, SEM and Raman imaging. Importantly, the latter technique allowed also for non-invasive measurements, reducing the risk of artifact creation associated with sample cutting with a scalpel.

18.
Beilstein J Org Chem ; 17: 2095-2101, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34476016

RESUMEN

Additive manufacturing or 3D printing as an umbrella term for various materials processing methods has distinct advantages over many other processing methods, including the ability to generate highly complex shapes and designs. However, the performance of any produced part not only depends on the material used and its shape, but is also critically dependent on its surface properties. Important features, such as wetting or fouling, critically depend mainly on the immediate surface energy. To gain control over the surface chemistry post-processing modifications are generally necessary, since it's not a feature of additive manufacturing. Here, we report on the use of initiator and catalyst-free photografting and photopolymerization for the hydrophilic modification of microfiber scaffolds obtained from hydrophobic medical-grade poly(ε-caprolactone) via melt-electrowriting. Contact angle measurements and Raman spectroscopy confirms the formation of a more hydrophilic coating of poly(2-hydroxyethyl methacrylate). Apart from surface modification, we also observe bulk polymerization, which is expected for this method, and currently limits the controllability of this procedure.

19.
Biomater Sci ; 9(16): 5415-5426, 2021 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-34318785

RESUMEN

The cultivation of cells forming three-dimensional structures like organoids holds great potential in different fields of life sciences and is gaining increasing interest with regards to clinical applications and personalised medicine. However, conventional hydrogels used as cell cultivation matrices (e.g. Matrigel®) contain animal-derived components in varying quantities, implicating low reproducibility of experiments and limited applicability for clinical use. Based on the strong need for developing novel, well defined, and animal-free hydrogels for 3D cell cultures, this study presents a comprehensive analysis of pancreas organoid cultivation in two synthetic hydrogels. Besides established visualisation techniques to monitor organoid formation and growth, confocal Raman microscopy was used for the first time to evaluate the gel matrices and organoid formation within the gels. The approach revealed so far not accessible information about material-cell interactions and the composition of the organoid lumen in a non-invasive and label-free manner. Confocal Raman microscopy thereby enabled a systematic characterisation of different hydrogels with respect to cell culture compatibility and allowed for the rational selection of a hydrogel formulation to serve as a synthetic and fully defined alternative to animal-derived cultivation matrices.


Asunto(s)
Hidrogeles , Organoides , Animales , Comunicación Celular , Páncreas , Reproducibilidad de los Resultados
20.
Drug Deliv Transl Res ; 11(4): 1545-1567, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33611768

RESUMEN

In recent years, the incidence of infected wounds is steadily increasing, and so is the clinical as well as economic interest in effective therapies. These combine reduction of pathogen load in the wound with general wound management to facilitate the healing process. The success of current therapies is challenged by harsh conditions in the wound microenvironment, chronicity, and biofilm formation, thus impeding adequate concentrations of active antimicrobials at the site of infection. Inadequate dosing accuracy of systemically and topically applied antibiotics is prone to promote development of antibiotic resistance, while in the case of antiseptics, cytotoxicity is a major problem. Advanced drug delivery systems have the potential to enable the tailor-made application of antimicrobials to the side of action, resulting in an effective treatment with negligible side effects. This review provides a comprehensive overview of the current state of treatment options for the therapy of infected wounds. In this context, a special focus is set on delivery systems for antimicrobials ranging from semi-solid and liquid formulations over wound dressings to more advanced carriers such as nano-sized particulate systems, vesicular systems, electrospun fibers, and microneedles, which are discussed regarding their potential for effective therapy of wound infections. Further, established and novel models and analytical techniques for preclinical testing are introduced and a future perspective is provided.


Asunto(s)
Antiinfecciosos , Infección de Heridas , Vendajes , Sistemas de Liberación de Medicamentos/métodos , Humanos , Cicatrización de Heridas , Infección de Heridas/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA