Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Microbiol ; 116(4): 1140-1150, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34423481

RESUMEN

In Escherichia coli, PriA, PriB, PriC, and DnaT proteins mediate three pathways for Replication Restart called PriA-PriB, PriA-PriC, and PriC. PriA is crucial for two of the three pathways. Its absence leads to slow growth, high basal levels of SOS expression, poorly partitioning nucleoids, UV sensitivity, and recombination deficiency. PriA has ATPase and helicase activities and interacts with PriB, DnaT, and single-stranded DNA-binding protein (SSB). priA300 (K230R) and priA301 (C479Y) have no phenotype as single mutants, but each phenocopy a priA-null mutant combined with ∆priB. This suggested that the two priA mutations affected the helicase activity that is required for the PriA-PriC pathway. To further test this, the biochemical activities of purified PriA300 and PriA301 were examined. As expected, PriA300 lacks ATPase and helicase activities but retains the ability to interact with PriB. PriA301, however, retains significant PriB-stimulated helicase activity even though PriA301 interactions with PriB and DNA are weakened. A PriA300,301 variant retains only the ability to interact with DNA in vitro and phenocopies the priA-null phenotype in vivo. This suggests that there are two biochemically and genetically distinct PriA-PriB pathways. One uses PriB-stimulated helicase activity to free a region of ssDNA and the other uses helicase-independent remodeling activity.


Asunto(s)
ADN Helicasas/genética , Proteínas de Unión al ADN/genética , Escherichia coli K12/genética , Proteínas de Escherichia coli/genética , ADN Helicasas/metabolismo , Replicación del ADN , ADN Bacteriano , Proteínas de Unión al ADN/metabolismo , Escherichia coli K12/metabolismo , Proteínas de Escherichia coli/metabolismo , Mutación
2.
PLoS One ; 16(7): e0255409, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34329356

RESUMEN

DNA replication complexes (replisomes) frequently encounter barriers that can eject them prematurely from the genome. To avoid the lethality of incomplete DNA replication that arises from these events, bacteria have evolved "DNA replication restart" mechanisms to reload replisomes onto abandoned replication forks. The Escherichia coli PriA DNA helicase orchestrates this process by recognizing and remodeling replication forks and recruiting additional proteins that help to drive replisome reloading. We have identified a conserved sequence motif within a linker region of PriA that docks into a groove on the exterior of the PriA helicase domain. Alterations to the motif reduce the apparent processivity and attenuate structure-specific helicase activity in PriA, implicating the motif as a potential autoregulatory element in replication fork processing. The study also suggests that multiple PriA molecules may function in tandem to enhance DNA unwinding processivity, highlighting an unexpected similarity between PriA and other DNA helicases.


Asunto(s)
ADN Helicasas/química , Replicación del ADN , ADN Bacteriano/química , Proteínas de Escherichia coli/química , Escherichia coli/química , Secuencias de Aminoácidos , ADN Helicasas/metabolismo , ADN Bacteriano/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Relación Estructura-Actividad
3.
Elife ; 82019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30618376

RESUMEN

Transcriptional pausing underlies regulation of cellular RNA biogenesis. A consensus pause sequence that acts on RNA polymerases (RNAPs) from bacteria to mammals halts RNAP in an elemental paused state from which longer-lived pauses can arise. Although the structural foundations of pauses prolonged by backtracking or nascent RNA hairpins are recognized, the fundamental mechanism of the elemental pause is less well-defined. Here we report a mechanistic dissection that establishes the elemental pause signal (i) is multipartite; (ii) causes a modest conformational shift that puts γ-proteobacterial RNAP in an off-pathway state in which template base loading but not RNA translocation is inhibited; and (iii) allows RNAP to enter pretranslocated and one-base-pair backtracked states easily even though the half-translocated state observed in paused cryo-EM structures rate-limits pause escape. Our findings provide a mechanistic basis for the elemental pause and a framework to understand how pausing is modulated by sequence, cellular conditions, and regulators.


Asunto(s)
Transcripción Genética , Emparejamiento Base/genética , Secuencia de Bases , Secuencia de Consenso/genética , ADN/genética , Cinética , Mutación/genética , Nucleótidos/metabolismo , ARN/genética , Moldes Genéticos , Elongación de la Transcripción Genética
4.
J Biol Chem ; 294(8): 2801-2814, 2019 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-30593500

RESUMEN

DNA helicases are motor proteins that couple the chemical energy of nucleoside triphosphate hydrolysis to the mechanical functions required for DNA unwinding. Studies of several helicases have identified strand-separating "pin" structures that are positioned to intercept incoming dsDNA and promote strand separation during helicase translocation. However, pin structures vary among helicases and it remains unclear whether they confer a conserved unwinding mechanism. Here, we tested the biochemical and cellular roles of a putative pin element within the Escherichia coli PriA DNA helicase. PriA orchestrates replication restart in bacteria by unwinding the lagging-strand arm of abandoned DNA replication forks and reloading the replicative helicase with the help of protein partners that combine with PriA to form what is referred to as a primosome complex. Using in vitro protein-DNA cross-linking, we localized the putative pin (a ß-hairpin within a zinc-binding domain in PriA) near the ssDNA-dsDNA junction of the lagging strand in a PriA-DNA replication fork complex. Removal of residues at the tip of the ß-hairpin eliminated PriA DNA unwinding, interaction with the primosome protein PriB, and cellular function. We isolated a spontaneous intragenic suppressor mutant of the priA ß-hairpin deletion mutant in which 22 codons around the deletion site were duplicated. This suppressor variant and an Ala-substituted ß-hairpin PriA variant displayed wildtype levels of DNA unwinding and PriB binding in vitro These results suggest essential but sequence nonspecific roles for the PriA pin element and coupling of PriA DNA unwinding to its interaction with PriB.


Asunto(s)
ADN Helicasas/metabolismo , Replicación del ADN , ADN Bacteriano/metabolismo , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/metabolismo , ADN/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Secuencia de Aminoácidos , Cristalografía por Rayos X , ADN/química , ADN/genética , ADN Helicasas/química , ADN Helicasas/genética , ADN Bacteriano/química , ADN Bacteriano/genética , ADN de Cadena Simple/química , ADN de Cadena Simple/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Conformación de Ácido Nucleico , Conformación Proteica
5.
Proc Natl Acad Sci U S A ; 115(39): E9075-E9084, 2018 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-30201718

RESUMEN

DNA replication restart, the essential process that reinitiates prematurely terminated genome replication reactions, relies on exquisitely specific recognition of abandoned DNA replication-fork structures. The PriA DNA helicase mediates this process in bacteria through mechanisms that remain poorly defined. We report the crystal structure of a PriA/replication-fork complex, which resolves leading-strand duplex DNA bound to the protein. Interaction with PriA unpairs one end of the DNA and sequesters the 3'-most nucleotide from the nascent leading strand into a conserved protein pocket. Cross-linking studies reveal a surface on the winged-helix domain of PriA that binds to parental duplex DNA. Deleting the winged-helix domain alters PriA's structure-specific DNA unwinding properties and impairs its activity in vivo. Our observations lead to a model in which coordinated parental-, leading-, and lagging-strand DNA binding provide PriA with the structural specificity needed to act on abandoned DNA replication forks.


Asunto(s)
ADN Helicasas/química , Replicación del ADN , ADN Bacteriano/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimología , Modelos Biológicos , Cristalografía por Rayos X , Dominios Proteicos , Estructura Secundaria de Proteína , Relación Estructura-Actividad
6.
Nucleic Acids Res ; 46(2): 504-519, 2018 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-29202195

RESUMEN

Multi-protein DNA replication complexes called replisomes perform the essential process of copying cellular genetic information prior to cell division. Under ideal conditions, replisomes dissociate only after the entire genome has been duplicated. However, DNA replication rarely occurs without interruptions that can dislodge replisomes from DNA. Such events produce incompletely replicated chromosomes that, if left unrepaired, prevent the segregation of full genomes to daughter cells. To mitigate this threat, cells have evolved 'DNA replication restart' pathways that have been best defined in bacteria. Replication restart requires recognition and remodeling of abandoned replication forks by DNA replication restart proteins followed by reloading of the replicative DNA helicase, which subsequently directs assembly of the remaining replisome subunits. This review summarizes our current understanding of the mechanisms underlying replication restart and the proteins that drive the process in Escherichia coli (PriA, PriB, PriC and DnaT).


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Replicación del ADN , ADN Bacteriano/genética , Proteínas de Unión al ADN/genética , Proteínas Bacterianas/química , ADN Helicasas/química , ADN Helicasas/genética , ADN Helicasas/metabolismo , ADN Bacteriano/química , ADN Bacteriano/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Modelos Genéticos , Modelos Moleculares , Conformación de Ácido Nucleico , Unión Proteica , Dominios Proteicos
7.
Nucleic Acids Res ; 44(20): 9745-9757, 2016 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-27484483

RESUMEN

Helicases couple ATP hydrolysis to nucleic acid binding and unwinding via molecular mechanisms that remain poorly defined for most enzyme subfamilies within the superfamily 2 (SF2) helicase group. A crystal structure of the PriA SF2 DNA helicase, which governs restart of prematurely terminated replication processes in bacteria, revealed the presence of an aromatic-rich loop (ARL) on the presumptive DNA-binding surface of the enzyme. The position and sequence of the ARL was similar to loops known to couple ATP hydrolysis with DNA binding in a subset of other SF2 enzymes, however, the roles of the ARL in PriA had not been investigated. Here, we show that changes within the ARL sequence uncouple PriA ATPase activity from DNA binding. In vitro protein-DNA crosslinking experiments define a residue- and nucleotide-specific interaction map for PriA, showing that the ARL binds replication fork junctions whereas other sites bind the leading or lagging strands. We propose that DNA binding to the ARL allosterically triggers ATP hydrolysis in PriA. Additional SF2 helicases with similarly positioned loops may also couple DNA binding to ATP hydrolysis using related mechanisms.


Asunto(s)
Adenosina Trifosfato/metabolismo , ADN Helicasas/química , ADN Helicasas/metabolismo , ADN/química , ADN/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Dominios y Motivos de Interacción de Proteínas , Sustitución de Aminoácidos , Proteínas Portadoras , ADN Helicasas/genética , Replicación del ADN , Activación Enzimática , Proteínas de Escherichia coli/genética , Hidrólisis , Modelos Moleculares , Conformación Molecular , Mutación , Unión Proteica , Origen de Réplica , Relación Estructura-Actividad
8.
DNA Repair (Amst) ; 26: 30-43, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25559557

RESUMEN

Among strains of Escherichia coli that have evolved to survive extreme exposure to ionizing radiation, mutations in the recA gene are prominent and contribute substantially to the acquired phenotype. Changes at amino acid residue 276, D276A and D276N, occur repeatedly and in separate evolved populations. RecA D276A and RecA D276N exhibit unique adaptations to an environment that can require the repair of hundreds of double strand breaks. These two RecA protein variants (a) exhibit a faster rate of filament nucleation on DNA, as well as a slower extension under at least some conditions, leading potentially to a distribution of the protein among a higher number of shorter filaments, (b) promote DNA strand exchange more efficiently in the context of a shorter filament, and (c) are markedly less inhibited by ADP. These adaptations potentially allow RecA protein to address larger numbers of double strand DNA breaks in an environment where ADP concentrations are higher due to a compromised cellular metabolism.


Asunto(s)
Proteínas de Escherichia coli/genética , Mutación , Tolerancia a Radiación/genética , Rec A Recombinasas/genética , Reparación del ADN por Recombinación/genética , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , ADN Bacteriano/metabolismo , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/antagonistas & inhibidores , Proteínas de Unión al ADN/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/antagonistas & inhibidores , Proteínas de Escherichia coli/metabolismo , Radiación Ionizante , Rec A Recombinasas/antagonistas & inhibidores , Rec A Recombinasas/metabolismo , Reparación del ADN por Recombinación/fisiología
9.
Nucleic Acids Res ; 42(20): 12707-21, 2014 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-25336618

RESUMEN

The conformational dynamics of the polymorphous trigger loop (TL) in RNA polymerase (RNAP) underlie multiple steps in the nucleotide addition cycle and diverse regulatory mechanisms. These mechanisms include nascent RNA hairpin-stabilized pausing, which inhibits TL folding into the trigger helices (TH) required for rapid nucleotide addition. The nascent RNA pause hairpin forms in the RNA exit channel and promotes opening of the RNAP clamp domain, which in turn stabilizes a partially folded, paused TL conformation that disfavors TH formation. We report that inhibiting TH unfolding with a disulfide crosslink slowed multiround nucleotide addition only modestly but eliminated hairpin-stabilized pausing. Conversely, a substitution that disrupts the TH folding pathway and uncouples establishment of key TH-NTP contacts from complete TH formation and clamp movement allowed rapid catalysis and eliminated hairpin-stabilized pausing. We also report that the active-site distal arm of the TH aids TL folding, but that a 188-aa insertion in the Escherichia coli TL (sequence insertion 3; SI3) disfavors TH formation and stimulates pausing. The effect of SI3 depends on the jaw domain, but not on downstream duplex DNA. Our results support the view that both SI3 and the pause hairpin modulate TL folding in a constrained pathway of intermediate states.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/química , Escherichia coli/enzimología , Biocatálisis , Dominio Catalítico , ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Modelos Moleculares , Mutación , Nucleótidos/metabolismo , Pliegue de Proteína , Estructura Terciaria de Proteína , Desplegamiento Proteico , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...