Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
RSC Adv ; 13(36): 24899-24908, 2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-37608797

RESUMEN

The task-specific ionic liquid trihexyltetradecylphosphonium 3-hydroxy-2-naphthoate has been described as a suitable extraction agent for numerous metals from aqueous phases, while additionally providing reduced leaching into the used matrices. Here, we investigate the extraction properties of this extractant towards rare earth elements. Of these, La, Ce, Nd, Ho und Lu were chosen as a representative mix of light and heavy elements. Single- as well as double-element extractions were carried out under varying conditions regarding pH, temperature and extraction time. The highest extraction efficacies and minimalized precipitation of the respective metals were recorded at a pH of 2.5. Satisfactory extraction efficacies (>80%) were achieved already after 6 hours for the elements Ce, Nd and Lu in single-element extraction experiments at room temperature. Increased temperatures improved the extraction efficacy for Nd from 36% at 20 °C to 80% at 30 °C after only 2 hours. Surprisingly, this effect was not observed for Ce in single-element experiments. In double-element feed solutions containing both Ce and Nd, however, the time-dependant extraction efficacy of Ce mirrored that of Nd. The pH in the aqueous extraction matrix changed during the extraction, showing a positive correlation with the extraction efficacy and revealing the extraction mechanism to be via anion exchange. The leaching was in good agreement with literature values, showed a positive correlation with extraction efficacies, and ranged for all extractions between 0.8 and 1.2%. Remarkably, increasing the temperature from 20 °C to 30 °C had no significant influence on leaching.

2.
J Hazard Mater ; 427: 128163, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-34979384

RESUMEN

Mercury (Hg), as one of the most frequently and globally occurring pollutants, is of major public health concern. Aquatic environments are the key compartment for Hg methylation as well as for its consequent bioaccumulation and biomagnification. This mesocosm study investigated the differences in Hg turnover, Hg distribution and bioaccumulation in two contrasting waterbodies: Panozzalacke (PL), an "average", oligotrophic European freshwater body and Lake Neusiedl (LN), an alkaline, saline, eutrophic, biologically highly productive lake. Mesocosm experiments were carried out with either water, water and sediment, and finally water, sediment and the macrophyte Ceratophyllum demersum from the respective waterbody. Hg2+ was added to the water phase and the Hg distribution over time was monitored in the compartments air, water, suspended particles, sediment and plants. The results show a much faster Hg turnover in LN compared to PL. Most striking is the significantly higher mercury bioaccumulation in macrophytes from LN and the significantly lower sedimentation rates there. We conclude that the specific physico-chemical and biological conditions in LN, e.g., alkalinity, sulfate content, dissolved carbon and high amount of particulate matter, lead to a rapid conversion of incoming mercury, accelerating bioaccumulation and potentially leading to unexpected mercury biomagnification in this lake. This has implications for other comparable waterbodies around the globe.


Asunto(s)
Mercurio , Contaminantes Químicos del Agua , Monitoreo del Ambiente , Lagos , Mercurio/análisis , Metilación , Contaminantes Químicos del Agua/análisis
3.
Antioxidants (Basel) ; 10(1)2021 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-33451064

RESUMEN

This study reports the impact of margarine-representative ingredients on its oxidative stability and green tea extract as a promising antioxidant in margarine. Oil-in-water emulsions received much attention regarding factors that influence their oxidative stability, however, water-in-oil emulsions have only been scarcely investigated. Margarine, a widely consumed water-in-oil emulsion, consists of 80-90% fat and is thermally treated when used for baking. As different types of margarine contain varying additives, their impact on the oxidative stability of margarine during processing is of pressing importance. Thus, the influence of different ingredients, such as emulsifiers, antioxidants, citric acid, ß-carotene and NaCl on the oxidative stability of margarine, heated at 80 °C for 1 h to accelerate lipid oxidation, was analyzed by the peroxide value and oxidation induction time. We found that monoglycerides influenced lipid oxidation depending on their fatty acyl chain. α-Tocopheryl acetate promoted lipid oxidation, while rosemary and green tea extract led to the opposite. Whereas green tea extract alone showed the most prominent antioxidant effect, combinations of green tea extract with citric acid, ß-carotene or NaCl increased lipid oxidation in margarine. Complementary, NMR data suggested that polyphenols in green tea extracts might decrease lipid mobility at the surface of the water droplets, which might lead to chelating of transition metals at the interface and decreasing lipid oxidation.

4.
ACS Omega ; 5(25): 15335-15343, 2020 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-32637807

RESUMEN

This study investigated the aluminum content in one of the most consumed daily beverages: coffee. The total Al concentration in 10 different samples of coffee beans and their water-extractable fraction were determined. We then tested the influence of different brewing methods on the concentration of the extracted Al in the final beverage. Metal analyses were performed using graphite furnace atomic absorption spectroscopy (GF-AAS) after microwave-assisted acid digestion. The results showed highly variable Al contents in coffee beans (1.5-15.5 mg kg-1), of which ∼2-10% were water-extractable. The brewing technique had a major influence on the Al content in the beverage: significantly higher Al concentrations (72.57 ± 23.96 µg L-1) occurred in coffee brewed in an aluminum moka pot. Interestingly, using ground coffee with this method even reduced the Al content in the final beverage compared to the brewing water used. Coffee brewed from Al capsules did not contain significantly higher Al concentrations compared to other methods.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...