RESUMEN
The apparent diffusion coefficient (ADC) provides a quantitative measure of water mobility that can be used to probe alterations in tissue microstructure due to disease or treatment. Establishment of the accepted level of variance in ADC measurements for each clinical application is critical for its successful implementation. The Diffusion-Weighted Imaging Biomarker Committee of the Quantitative Imaging Biomarkers Alliance (QIBA) has recently advanced the ADC Profile from the consensus to clinically feasible stage for the brain, liver, prostate, and breast. This profile distills multiple studies on ADC repeatability and describes detailed procedures to achieve stated performance claims on an observed ADC change within acceptable confidence limits. In addition to reviewing the current ADC Profile claims, this report has used recent literature to develop proposed updates for establishing metrology benchmarks for mean lesion ADC change that account for measurement variance. Specifically, changes in mean ADC exceeding 8% for brain lesions, 27% for liver lesions, 27% for prostate lesions, and 15% for breast lesions are claimed to represent true changes with 95% confidence. This report also discusses the development of the ADC Profile, highlighting its various stages, and describes the workflow essential to achieving a standardized implementation of advanced quantitative diffusion-weighted MRI in the clinic. The presented QIBA ADC Profile guidelines should enable successful clinical application of ADC as a quantitative imaging biomarker and ensure reproducible ADC measurements that can be used to confidently evaluate longitudinal changes and treatment response for individual patients.
Asunto(s)
Imagen de Difusión por Resonancia Magnética , Humanos , Imagen de Difusión por Resonancia Magnética/métodos , Masculino , Femenino , Biomarcadores , Reproducibilidad de los ResultadosRESUMEN
Objective.Image quality in whole-body MRI (WB-MRI) may be degraded by faulty radiofrequency (RF) coil elements or mispositioning of the coil arrays. Phantom-based quality control (QC) is used to identify broken RF coil elements but the frequency of these acquisitions is limited by scanner and staff availability. This work aimed to develop a scan-specific QC acquisition and processing pipeline to detect broken RF coil elements, which is sufficiently rapid to be added to the clinical WB-MRI protocol. The purpose of this is to improve the quality of WB-MRI by reducing the number of patient examinations conducted with suboptimal equipment.Approach.A rapid acquisition (14 s additional acquisition time per imaging station) was developed that identifies broken RF coil elements by acquiring images from each individual coil element and using the integral body coil. This acquisition was added to one centre's clinical WB-MRI protocol for one year (892 examinations) to evaluate the effect of this scan-specific QC. To demonstrate applicability in multi-centre imaging trials, the technique was also implemented on scanners from three manufacturers.Main results. Over the course of the study RF coil elements were flagged as potentially broken on five occasions, with the faults confirmed in four of those cases. The method had a precision of 80% and a recall of 100% for detecting faulty RF coil elements. The coil array positioning measurements were consistent across scanners and have been used to define the expected variation in signal.Significance. The technique demonstrated here can identify faulty RF coil elements and positioning errors and is a practical addition to the clinical WB-MRI protocol. This approach was fully implemented on systems from two manufacturers and partially implemented on a third. It has potential to reduce the number of clinical examinations conducted with suboptimal hardware and improve image quality across multi-centre studies.
Asunto(s)
Imagen por Resonancia Magnética , Control de Calidad , Imagen de Cuerpo Entero , Imagen por Resonancia Magnética/instrumentación , Imagen por Resonancia Magnética/normas , Humanos , Imagen de Cuerpo Entero/instrumentación , Fantasmas de Imagen , Procesamiento de Imagen Asistido por Computador/métodos , Ondas de RadioRESUMEN
OBJECTIVES: MAchine Learning In MyelomA Response (MALIMAR) is an observational clinical study combining "real-world" and clinical trial data, both retrospective and prospective. Images were acquired on three MRI scanners over a 10-year window at two institutions, leading to a need for extensive curation. METHODS: Curation involved image aggregation, pseudonymisation, allocation between project phases, data cleaning, upload to an XNAT repository visible from multiple sites, annotation, incorporation of machine learning research outputs and quality assurance using programmatic methods. RESULTS: A total of 796 whole-body MR imaging sessions from 462 subjects were curated. A major change in scan protocol part way through the retrospective window meant that approximately 30% of available imaging sessions had properties that differed significantly from the remainder of the data. Issues were found with a vendor-supplied clinical algorithm for "composing" whole-body images from multiple imaging stations. Historic weaknesses in a digital video disk (DVD) research archive (already addressed by the mid-2010s) were highlighted by incomplete datasets, some of which could not be completely recovered. The final dataset contained 736 imaging sessions for 432 subjects. Software was written to clean and harmonise data. Implications for the subsequent machine learning activity are considered. CONCLUSIONS: MALIMAR exemplifies the vital role that curation plays in machine learning studies that use real-world data. A research repository such as XNAT facilitates day-to-day management, ensures robustness and consistency and enhances the value of the final dataset. The types of process described here will be vital for future large-scale multi-institutional and multi-national imaging projects. CRITICAL RELEVANCE STATEMENT: This article showcases innovative data curation methods using a state-of-the-art image repository platform; such tools will be vital for managing the large multi-institutional datasets required to train and validate generalisable ML algorithms and future foundation models in medical imaging. KEY POINTS: ⢠Heterogeneous data in the MALIMAR study required the development of novel curation strategies. ⢠Correction of multiple problems affecting the real-world data was successful, but implications for machine learning are still being evaluated. ⢠Modern image repositories have rich application programming interfaces enabling data enrichment and programmatic QA, making them much more than simple "image marts".
RESUMEN
OBJECTIVES: Diffusion-weighted imaging (DWI) with simultaneous multi-slice (SMS) acquisition and advanced processing can accelerate acquisition time and improve MR image quality. This study evaluated the image quality and apparent diffusion coefficient (ADC) measurements of free-breathing DWI acquired from patients with liver metastases using a prototype SMS-DWI acquisition (with/without an advanced processing option) and conventional DWI. METHODS: Four DWI schemes were compared in a pilot 5-patient cohort; three DWI schemes were further assessed in a 24-patient cohort. Two readers scored image quality of all b-value images and ADC maps across the three methods. ADC measurements were performed, for all three methods, in left and right liver parenchyma, spleen, and liver metastases. The Friedman non-parametric test (post-hoc Wilcoxon test with Bonferroni correction) was used to compare image quality scoring; t-test was used for ADC comparisons. RESULTS: SMS-DWI was faster (by 24%) than conventional DWI. Both readers scored the SMS-DWI with advanced processing as having the best image quality for highest b-value images (b750) and ADC maps; Cohen's kappa inter-reader agreement was 0.6 for b750 image and 0.56 for ADC maps. The prototype SMS-DWI sequence with advanced processing allowed a better visualization of the left lobe of the liver. ADC measured in liver parenchyma, spleen, and liver metastases using the SMS-DWI with advanced processing option showed lower values than those derived from the SMS-DWI method alone (t-test, p < 0.0001; p < 0.0001; p = 0.002). CONCLUSIONS: Free-breathing SMS-DWI with advanced processing was faster and demonstrated better image quality versus a conventional DWI protocol in liver patients. CLINICAL RELEVANCE STATEMENT: Free-breathing simultaneous multi-slice- diffusion-weighted imaging (DWI) with advanced processing was faster and demonstrated better image quality versus a conventional DWI protocol in liver patients. KEY POINTS: ⢠Diffusion-weighted imaging (DWI) with simultaneous multi-slice (SMS) can accelerate acquisition time and improve image quality. ⢠Apparent diffusion coefficients (ADC) measured in liver parenchyma, spleen, and liver metastases using the simultaneous multi-slice DWI with advanced processing were significantly lower than those derived from the simultaneous multi-slice DWI method alone. ⢠Simultaneous multi-slice DWI sequence with inline advanced processing was faster and demonstrated better image quality in liver patients.
Asunto(s)
Neoplasias Hepáticas , Respiración , Humanos , Reproducibilidad de los Resultados , Neoplasias Hepáticas/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética/métodos , Imagen Eco-Planar/métodosRESUMEN
T2-weighted magnetic resonance imaging (MRI) and diffusion-weighted imaging (DWI) are essential components of cervical cancer diagnosis. However, combining these channels for the training of deep learning models is challenging due to image misalignment. Here, we propose a novel multi-head framework that uses dilated convolutions and shared residual connections for the separate encoding of multiparametric MRI images. We employ a residual U-Net model as a baseline, and perform a series of architectural experiments to evaluate the tumor segmentation performance based on multiparametric input channels and different feature encoding configurations. All experiments were performed on a cohort of 207 patients with locally advanced cervical cancer. Our proposed multi-head model using separate dilated encoding for T2W MRI and combined b1000 DWI and apparent diffusion coefficient (ADC) maps achieved the best median Dice similarity coefficient (DSC) score, 0.823 (confidence interval (CI), 0.595-0.797), outperforming the conventional multi-channel model, DSC 0.788 (95% CI, 0.568-0.776), although the difference was not statistically significant (p > 0.05). We investigated channel sensitivity using 3D GRAD-CAM and channel dropout, and highlighted the critical importance of T2W and ADC channels for accurate tumor segmentation. However, our results showed that b1000 DWI had a minor impact on the overall segmentation performance. We demonstrated that the use of separate dilated feature extractors and independent contextual learning improved the model's ability to reduce the boundary effects and distortion of DWI, leading to improved segmentation performance. Our findings could have significant implications for the development of robust and generalizable models that can extend to other multi-modal segmentation applications.
RESUMEN
BACKGROUND: The Myeloma Response Assessment and Diagnosis System (MY-RADS) guidelines establish a standardised acquisition and analysis pipeline for whole-body MRI (WB-MRI) in patients with myeloma. This is the first study to assess image quality in a multi-centre prospective trial using MY-RADS. METHODS: The cohort consisted of 121 examinations acquired across ten sites with a range of prior WB-MRI experience, three scanner manufacturers and two field strengths. Image quality was evaluated qualitatively by a radiologist and quantitatively using a semi-automated pipeline to quantify common artefacts and image quality issues. The intra- and inter-rater repeatability of qualitative and quantitative scoring was also assessed. RESULTS: Qualitative radiological scoring found that the image quality was generally good, with 94% of examinations rated as good or excellent and only one examination rated as non-diagnostic. There was a significant correlation between radiological and quantitative scoring for most measures, and intra- and inter-rater repeatability were generally good. When the quality of an overall examination was low, this was often due to low quality diffusion-weighted imaging (DWI), where signal to noise ratio (SNR), anterior thoracic signal loss and brain geometric distortion were found as significant predictors of examination quality. CONCLUSIONS: It is possible to successfully deliver a multi-centre WB-MRI study using the MY-RADS protocol involving scanners with a range of manufacturers, models and field strengths. Quantitative measures of image quality were developed and shown to be significantly correlated with radiological assessment. The SNR of DW images was identified as a significant factor affecting overall examination quality. TRIAL REGISTRATION: ClinicalTrials.gov, NCT03188172 , Registered on 15 June 2017. CRITICAL RELEVANCE STATEMENT: Good overall image quality, assessed both qualitatively and quantitatively, can be achieved in a multi-centre whole-body MRI study using the MY-RADS guidelines. KEY POINTS: ⢠A prospective multi-centre WB-MRI study using MY-RADS can be successfully delivered. ⢠Quantitative image quality metrics were developed and correlated with radiological assessment. ⢠SNR in DWI was identified as a significant predictor of quality, allowing for rapid quality adjustment.
RESUMEN
OBJECTIVE: To establish optimised diffusion weightings ('b-values') for acquisition of whole-body diffusion-weighted MRI (WB-DWI) for estimation of the apparent diffusion coefficient (ADC) in patients with metastatic melanoma (MM). Existing recommendations for WB-DWI have not been optimised for the tumour properties in MM; therefore, evaluation of acquisition parameters is essential before embarking on larger studies. METHODS: Retrospective clinical data and phantom experiments were used. Clinical data comprised 125 lesions from 14 examinations in 11 patients with multifocal MM, imaged before and/or after treatment with immunotherapy at a single institution. ADC estimates from these data were applied to a model to estimate the optimum b-value. A large non-diffusing phantom was used to assess eddy current-induced geometric distortion. RESULTS: Considering all tumour sites from pre- and post-treatment examinations together, metastases exhibited a large range of mean ADC values, [0.67-1.49] × 10-3 mm2/s, and the optimum high b-value (bhigh) for ADC estimation was 1100 (10th-90th percentile: 740-1790) s/mm2. At higher b-values, geometric distortion increased, and longer echo times were required, leading to reduced signal. CONCLUSIONS: Theoretical optimisation gave an optimum bhigh of 1100 (10th-90th percentile: 740-1790) s/mm2 for ADC estimation in MM, with the large range of optimum b-values reflecting the wide range of ADC values in these tumours. Geometric distortion and minimum echo time increase at higher b-values and are not included in the theoretical optimisation; bhigh in the range 750-1100 s/mm2 should be adopted to maintain acceptable image quality but performance should be evaluated for a specific scanner. KEY POINTS: ⢠Theoretical optimisation gave an optimum high b-value of 1100 (10th-90th percentile: 740-1790) s/mm2 for ADC estimation in metastatic melanoma. ⢠Considering geometric distortion and minimum echo time (TE), a b-value in the range 750-1100 s/mm2 is recommended. ⢠Sites should evaluate the performance of specific scanners to assess the effect of geometric distortion and minimum TE.
Asunto(s)
Melanoma , Neoplasias Primarias Secundarias , Humanos , Estudios Retrospectivos , Imagen de Difusión por Resonancia Magnética/métodos , Melanoma/diagnóstico por imagen , Fantasmas de Imagen , Reproducibilidad de los ResultadosRESUMEN
BACKGROUND: Magnetic resonance imaging (MRI) can be used to target tumour components in biopsy procedures, while the ability to precisely correlate histology and MRI signal is crucial for imaging biomarker validation. Robotic MRI/computed tomography (CT) fusion biopsy offers the potential for this without in-gantry biopsy, although requires development. METHODS: Test-retest T1 and T2 relaxation times, attenuation (Hounsfield units, HU), and biopsy core quality were prospectively assessed (January-December 2021) in a range of gelatin, agar, and mixed gelatin/agar solutions of differing concentrations on days 1 and 8 after manufacture. Suitable materials were chosen, and four biopsy phantoms were constructed with twelve spherical 1-3-cm diameter targets visible on MRI, but not on CT. A technical pipeline was developed, and intraoperator and interoperator reliability was tested in four operators performing a total of 96 biopsies. Statistical analysis included T1, T2, and HU repeatability using Bland-Altman analysis, Dice similarity coefficient (DSC), and intraoperator and interoperator reliability. RESULTS: T1, T2, and HU repeatability had 95% limits-of-agreement of 8.3%, 3.4%, and 17.9%, respectively. The phantom was highly reproducible, with DSC of 0.93 versus 0.92 for scanning the same or two different phantoms, respectively. Hit rate was 100% (96/96 targets), and all operators performed robotic biopsies using a single volumetric acquisition. The fastest procedure time was 32 min for all 12 targets. CONCLUSIONS: A reproducible biopsy phantom was developed, validated, and used to test robotic MRI/CT-fusion biopsy. The technique was highly accurate, reliable, and achievable in clinically acceptable timescales meaning it is suitable for clinical application.
Asunto(s)
Gelatina , Procedimientos Quirúrgicos Robotizados , Reproducibilidad de los Resultados , Agar , Biopsia Guiada por Imagen , Imagen por Resonancia Magnética/métodos , Tomografía Computarizada por Rayos X/métodosRESUMEN
PURPOSE: This overview of the current landscape of quantitative magnetic resonance imaging biomarkers (qMR IBs) aims to support the standardisation of academic IBs to assist their translation to clinical practice. METHODS: We used three complementary approaches to investigate qMR IB use and quality management practices within the UK: 1) a literature search of qMR and quality management terms during 2011-2015 and 2016-2020; 2) a database search for clinical research studies using qMR IBs during 2016-2020; and 3) a survey to ascertain the current availability and quality management practices for clinical MRI scanners and associated equipment at research institutions across the UK. RESULTS: The analysis showed increased use of all qMR methods between the periods 2011-2015 and 2016-2020 and diffusion-tensor MRI and volumetry to be popular methods. However, the "translation ratio" of journal articles to clinical research studies was higher for qMR methods that have evidence of clinical translation via a commercial route, such as fat fraction and T2 mapping. The number of journal articles citing quality management terms doubled between the periods 2011-2015 and 2016-2020; although, its proportion relative to all journal articles only increased by 3.0%. The survey suggested that quality assurance (QA) and quality control (QC) of data acquisition procedures are under-reported in the literature and that QA/QC of acquired data/data analysis are under-developed and lack consistency between institutions. CONCLUSIONS: We summarise current attempts to standardise and translate qMR IBs, and conclude by outlining the ideal quality management practices and providing a gap analysis between current practice and a metrological standard.
Asunto(s)
Biomarcadores , Humanos , Imagen de Difusión Tensora , Imagen por Resonancia Magnética/métodosRESUMEN
Background: Size-based assessments are inaccurate indicators of tumor response in soft-tissue sarcoma (STS), motivating the requirement for new response imaging biomarkers for this rare and heterogeneous disease. In this study, we assess the test-retest repeatability of radiomic features from MR diffusion-weighted imaging (DWI) and derived maps of apparent diffusion coefficient (ADC) in retroperitoneal STS and compare baseline repeatability with changes in radiomic features following radiotherapy (RT). Materials and Methods: Thirty patients with retroperitoneal STS received an MR examination prior to treatment, of whom 23/30 were investigated in our repeatability analysis having received repeat baseline examinations and 14/30 patients were investigated in our post-treatment analysis having received an MR examination after completing pre-operative RT. One hundred and seven radiomic features were extracted from the full manually delineated tumor region using PyRadiomics. Test-retest repeatability was assessed using an intraclass correlation coefficient (baseline ICC), and post-radiotherapy variance analysis (post-RT-IMS) was used to compare the change in radiomic feature value to baseline repeatability. Results: For the ADC maps and DWI images, 101 and 102 features demonstrated good baseline repeatability (baseline ICC > 0.85), respectively. Forty-three and 2 features demonstrated both good baseline repeatability and a high post-RT-IMS (>0.85), respectively. Pearson correlation between the baseline ICC and post-RT-IMS was weak (0.432 and 0.133, respectively). Conclusions: The ADC-based radiomic analysis shows better test-retest repeatability compared with features derived from DWI images in STS, and some of these features are sensitive to post-treatment change. However, good repeatability at baseline does not imply sensitivity to post-treatment change.
RESUMEN
A shift in radiology to a data-driven specialty has been unlocked by synergistic developments in imaging biomarkers (IB) and computational science. This is advancing the capability to deliver "virtual biopsies" within oncology. The ability to non-invasively probe tumour biology both spatially and temporally would fulfil the potential of imaging to inform management of complex tumours; improving diagnostic accuracy, providing new insights into inter- and intra-tumoral heterogeneity and individualised treatment planning and monitoring. Soft tissue sarcomas (STS) are rare tumours of mesenchymal origin with over 150 histological subtypes and notorious heterogeneity. The combination of inter- and intra-tumoural heterogeneity and the rarity of the disease remain major barriers to effective treatments. We provide an overview of the process of successful IB development, the key imaging and computational advancements in STS including quantitative magnetic resonance imaging, radiomics and artificial intelligence, and the studies to date that have explored the potential biological surrogates to imaging metrics. We discuss the promising future directions of IBs in STS and illustrate how the routine clinical implementation of a virtual biopsy has the potential to revolutionise the management of this group of complex cancers and improve clinical outcomes.
RESUMEN
BACKGROUND: Diffusion weighted imaging (DWI) with intravoxel incoherent motion (IVIM) modelling can inform on tissue perfusion without exogenous contrast administration. Dynamic-contrast-enhanced (DCE) MRI can also characterise tissue perfusion, but requires a bolus injection of a Gadolinium-based contrast agent. This study compares the use of DCE-MRI and IVIM-DWI methods in assessing response to anti-angiogenic treatment in patients with colorectal liver metastases in a cohort with confirmed treatment response. METHODS: This prospective imaging study enrolled 25 participants with colorectal liver metastases to receive Regorafenib treatment. A target metastasis > 2 cm in each patient was imaged before and at 15 days after treatment on a 1.5T MR scanner using slice-matched IVIM-DWI and DCE-MRI protocols. MRI data were motion-corrected and tumour volumes of interest drawn on b=900 s/mm2 diffusion-weighted images were transferred to DCE-MRI data for further analysis. The median value of four IVIM-DWI parameters [diffusion coefficient D (10-3 mm2/s), perfusion fraction f (ml/ml), pseudodiffusion coefficient D* (10-3 mm2/s), and their product fD* (mm2/s)] and three DCE-MRI parameters [volume transfer constant Ktrans (min-1), enhancement fraction EF (%), and their product KEF (min-1)] were recorded at each visit, before and after treatment. Changes in pre- and post-treatment measurements of all MR parameters were assessed using Wilcoxon signed-rank tests (P<0.05 was considered significant). DCE-MRI and IVIM-DWI parameter correlations were evaluated with Spearman rank tests. Functional MR parameters were also compared against Response Evaluation Criteria In Solid Tumours v.1.1 (RECIST) evaluations. RESULTS: Significant treatment-induced reductions of DCE-MRI parameters across the cohort were observed for EF (91.2 to 50.8%, P<0.001), KEF (0.095 to 0.045 min-1, P<0.001) and Ktrans (0.109 to 0.078 min-1, P=0.002). For IVIM-DWI, only D (a non-perfusion parameter) increased significantly post treatment (0.83 to 0.97 × 10-3 mm2/s, P<0.001), while perfusion-related parameters showed no change. No strong correlations were found between DCE-MRI and IVIM-DWI parameters. A moderate correlation was found, after treatment, between Ktrans and D* (r=0.60; P=0.002) and fD* (r=0.67; P<0.001). When compared to RECIST v.1.1 evaluations, KEF and D correctly identified most clinical responders, whilst non-responders were incorrectly identified. CONCLUSION: IVIM-DWI perfusion-related parameters showed limited sensitivity to the anti-angiogenic effects of Regorafenib treatment in colorectal liver metastases and showed low correlation with DCE-MRI parameters, despite profound and significant post-treatment reductions in DCE-MRI measurements. TRIAL REGISTRATION: NCT03010722 clinicaltrials.gov; registration date 6th January 2015.
Asunto(s)
Neoplasias Colorrectales , Neoplasias Hepáticas , Neoplasias Colorrectales/diagnóstico por imagen , Neoplasias Colorrectales/tratamiento farmacológico , Humanos , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/tratamiento farmacológico , Imagen por Resonancia Magnética , Estudios ProspectivosRESUMEN
The recent rise of deep learning (DL) and its promising capabilities in capturing non-explicit detail from large datasets have attracted substantial research attention in the field of medical image processing. DL provides grounds for technological development of computer-aided diagnosis and segmentation in radiology and radiation oncology. Amongst the anatomical locations where recent auto-segmentation algorithms have been employed, the pelvis remains one of the most challenging due to large intra- and inter-patient soft-tissue variabilities. This review provides a comprehensive, non-systematic and clinically-oriented overview of 74 DL-based segmentation studies, published between January 2016 and December 2020, for bladder, prostate, cervical and rectal cancers on computed tomography (CT) and magnetic resonance imaging (MRI), highlighting the key findings, challenges and limitations.
RESUMEN
BACKGROUND: Computed tomography (CT) and magnetic resonance imaging (MRI) are the mainstay imaging modalities in radiotherapy planning. In MR-Linac treatment, manual annotation of organs-at-risk (OARs) and clinical volumes requires a significant clinician interaction and is a major challenge. Currently, there is a lack of available pre-annotated MRI data for training supervised segmentation algorithms. This study aimed to develop a deep learning (DL)-based framework to synthesize pelvic T1-weighted MRI from a pre-existing repository of clinical planning CTs. METHODS: MRI synthesis was performed using UNet++ and cycle-consistent generative adversarial network (Cycle-GAN), and the predictions were compared qualitatively and quantitatively against a baseline UNet model using pixel-wise and perceptual loss functions. Additionally, the Cycle-GAN predictions were evaluated through qualitative expert testing (4 radiologists), and a pelvic bone segmentation routine based on a UNet architecture was trained on synthetic MRI using CT-propagated contours and subsequently tested on real pelvic T1 weighted MRI scans. RESULTS: In our experiments, Cycle-GAN generated sharp images for all pelvic slices whilst UNet and UNet++ predictions suffered from poorer spatial resolution within deformable soft-tissues (e.g. bladder, bowel). Qualitative radiologist assessment showed inter-expert variabilities in the test scores; each of the four radiologists correctly identified images as acquired/synthetic with 67%, 100%, 86% and 94% accuracy. Unsupervised segmentation of pelvic bone on T1-weighted images was successful in a number of test cases. CONCLUSION: Pelvic MRI synthesis is a challenging task due to the absence of soft-tissue contrast on CT. Our study showed the potential of deep learning models for synthesizing realistic MR images from CT, and transferring cross-domain knowledge which may help to expand training datasets for 21 development of MR-only segmentation models.
RESUMEN
BACKGROUND: Diffusion-weighted magnetic resonance imaging (DW-MRI) potentially interrogates site-specific response to neoadjuvant chemotherapy (NAC) in epithelial ovarian cancer (EOC). METHODS: Participants with newly diagnosed EOC due for platinum-based chemotherapy and interval debulking surgery were recruited prospectively in a multicentre study (n = 47 participants). Apparent diffusion coefficient (ADC) and solid tumour volume (up to 10 lesions per participant) were obtained from DW-MRI before and after NAC (including double-baseline for repeatability assessment in n = 19). Anatomically matched lesions were analysed after surgical excision (65 lesions obtained from 25 participants). A trained algorithm determined tumour cell fraction, percentage tumour and percentage necrosis on histology. Whole-lesion post-NAC ADC and pre/post-NAC ADC changes were compared with histological metrics (residual tumour/necrosis) for each tumour site (ovarian, omental, peritoneal, lymph node). RESULTS: Tumour volume reduced at all sites after NAC. ADC increased between pre- and post-NAC measurements. Post-NAC ADC correlated negatively with tumour cell fraction. Pre/post-NAC changes in ADC correlated positively with percentage necrosis. Significant correlations were driven by peritoneal lesions. CONCLUSIONS: Following NAC in EOC, the ADC (measured using DW-MRI) increases differentially at disease sites despite similar tumour shrinkage, making its utility site-specific. After NAC, ADC correlates negatively with tumour cell fraction; change in ADC correlates positively with percentage necrosis. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov NCT01505829.
Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Biomarcadores/metabolismo , Carcinoma Epitelial de Ovario/patología , Imagen por Resonancia Magnética/métodos , Necrosis , Terapia Neoadyuvante/métodos , Neoplasia Residual/patología , Anciano , Carcinoma Epitelial de Ovario/tratamiento farmacológico , Carcinoma Epitelial de Ovario/metabolismo , Femenino , Estudios de Seguimiento , Humanos , Persona de Mediana Edad , Neoplasia Residual/tratamiento farmacológico , Neoplasia Residual/metabolismo , Pronóstico , Estudios Prospectivos , Carga TumoralRESUMEN
OBJECTIVE: To compare integrated slice-specific dynamic shim (iShim) with distortion correction post-processing to conventional 3D volume shim for the reduction of artefacts and signal loss in 1.5 T whole-body diffusion-weighted imaging (WB-DWI). METHODS: Ten volunteers underwent WB-DWI using conventional 3D volume shim and iShim. Forty-eight consecutive patients underwent WB-DWI with either volume shim (n = 24) or iShim (n = 24) only. For all subjects, displacement of the spinal cord at imaging station interfaces was measured on composed b = 900 s/mm2 images. The signal intensity ratios, computed as the average signal intensity in a region of high susceptibility gradient (sternum) divided by the average signal intensity in a region of low susceptibility gradient (vertebral body), were compared in volunteers. For patients, image quality was graded from 1 to 5 (1 = Poor, 5 = Excellent). Signal intensity discontinuity scores were recorded from 1 to 4 (1 = 2 + steps, 4 = 0 steps). A p value of < 0.05 was considered significant. RESULTS: Spinal cord displacement artefacts were lower with iShim (p < 0.05) at the thoracic junction in volunteers and at the cervical and thoracic junctions in patients (p < 0.05). The sternum/vertebra signal intensity ratio in healthy volunteers was higher with iShim compared with the volume shim sequence (p < 0.05). There were no significant differences between the volume shim and iShim patient groups in terms of image quality and signal intensity discontinuity scores. CONCLUSION: iShim reduced the degree of spinal cord displacement artefact between imaging stations and susceptibility-gradient-induced signal loss.
Asunto(s)
Artefactos , Imagen de Difusión por Resonancia Magnética , Imagen Eco-Planar , Humanos , Médula Espinal/diagnóstico por imagen , Columna VertebralRESUMEN
Background Treatment of advanced epithelial ovarian cancer results in a relapse rate of 75%. Early markers of response would enable optimization of management and improved outcome in both primary and recurrent disease. Purpose To assess the apparent diffusion coefficient (ADC), derived from diffusion-weighted MRI, as an indicator of response, progression-free survival (PFS), and overall survival. Materials and Methods This prospective multicenter trial (from 2012-2016) recruited participants with stage III or IV ovarian, primary peritoneal, or fallopian tube cancer (newly diagnosed, cohort one; relapsed, cohort two) scheduled for platinum-based chemotherapy, with interval debulking surgery in cohort one. Cohort one underwent two baseline MRI examinations separated by 0-7 days to assess ADC repeatability; an additional MRI was performed after three treatment cycles. Cohort two underwent imaging at baseline and after one and three treatment cycles. ADC changes in responders and nonresponders were compared (Wilcoxon rank sum tests). PFS and overall survival were assessed by using a multivariable Cox model. Results A total of 125 participants (median age, 63.3 years [interquartile range, 57.0-70.7 years]; 125 women; cohort one, n = 47; cohort two, n = 78) were included. Baseline ADC (range, 77-258 × 10-5mm2s-1) was repeatable (upper and lower 95% limits of agreement of 12 × 10-5mm2s-1 [95% confidence interval {CI}: 6 × 10-5mm2s-1 to 18 × 10-5mm2s-1] and -15 × 10-5mm2s-1 [95% CI: -21 × 10-5mm2s-1 to -9 × 10-5mm2s-1]). ADC increased in 47% of cohort two after one treatment cycle, and in 58% and 53% of cohorts one and two, respectively, after three cycles. Percentage change from baseline differed between responders and nonresponders after three cycles (16.6% vs 3.9%; P = .02 [biochemical response definition]; 19.0% vs 6.2%; P = .04 [radiologic definition]). ADC increase after one cycle was associated with longer PFS in cohort two (adjusted hazard ratio, 0.86; 95% CI: 0.75, 0.98; P = .03). ADC change was not indicative of overall survival for either cohort. Conclusion After three cycles of platinum-based chemotherapy, apparent diffusion coefficient (ADC) changes are indicative of response. After one treatment cycle, increased ADC is indicative of improved progression-free survival in relapsed disease. Published under a CC BY 4.0 license. Online supplemental material is available for this article.
Asunto(s)
Carcinoma Epitelial de Ovario/diagnóstico por imagen , Carcinoma Epitelial de Ovario/terapia , Imagen de Difusión por Resonancia Magnética/métodos , Anciano , Biomarcadores de Tumor/análisis , Carcinoma Epitelial de Ovario/patología , Terapia Combinada , Femenino , Humanos , Persona de Mediana Edad , Recurrencia Local de Neoplasia , Estadificación de Neoplasias , Estudios Prospectivos , Tasa de SupervivenciaRESUMEN
Background: Multi-parametric MRI provides non-invasive methods for response assessment of soft-tissue sarcoma (STS) from non-surgical treatments. However, evaluation of MRI parameters over the whole tumor volume may not reveal the full extent of post-treatment changes as STS tumors are often highly heterogeneous, including cellular tumor, fat, necrosis, and cystic tissue compartments. In this pilot study, we investigate the use of machine-learning approaches to automatically delineate tissue compartments in STS, and use this approach to monitor post-radiotherapy changes. Methods: Eighteen patients with retroperitoneal sarcoma were imaged using multi-parametric MRI; 8/18 received a follow-up imaging study 2-4 weeks after pre-operative radiotherapy. Eight commonly-used supervised machine-learning techniques were optimized for classifying pixels into one of five tissue sub-types using an exhaustive cross-validation approach and expert-defined regions of interest as a gold standard. Final pixel classification was smoothed using a Markov Random Field (MRF) prior distribution on the final machine-learning models. Findings: 5/8 machine-learning techniques demonstrated high median cross-validation accuracies (82.2%, range 80.5-82.5%) with no significant difference between these five methods. One technique was selected (Naïve-Bayes) due to its relatively short training and class-prediction times (median 0.73 and 0.69 ms, respectively on a 3.5 GHz personal machine). When combined with the MRF-prior, this approach was successfully applied in all eight post-radiotherapy imaging studies and provided visualization and quantification of changes to independent STS sub-regions following radiotherapy for heterogeneous response assessment. Interpretation: Supervised machine-learning approaches to tissue classification in multi-parametric MRI of soft-tissue sarcomas provide quantitative evaluation of heterogeneous tissue changes following radiotherapy.
RESUMEN
Purpose: To evaluate repeatability of quantitative multi-parametric MRI in retroperitoneal sarcomas, assess parameter changes with radiotherapy, and correlate pre-operative values with histopathological findings in the surgical specimens. Materials and Methods: Thirty patients with retroperitoneal sarcoma were imaged at baseline, of whom 27 also underwent a second baseline examination for repeatability assessment. 14/30 patients were treated with pre-operative radiotherapy and were imaged again after completing radiotherapy (50.4 Gy in 28 daily fractions, over 5.5 weeks). The following parameter estimates were assessed in the whole tumor volume at baseline and following radiotherapy: apparent diffusion coefficient (ADC), parameters of the intra-voxel incoherent motion model of diffusion-weighted MRI (D, f, D*), transverse relaxation rate, fat fraction, and enhancing fraction after gadolinium-based contrast injection. Correlation was evaluated between pre-operative quantitative parameters and histopathological assessments of cellularity and fat fraction in post-surgical specimens (ClinicalTrials.gov, registration number NCT01902667). Results: Upper and lower 95% limits of agreement were 7.1 and -6.6%, respectively for median ADC at baseline. Median ADC increased significantly post-radiotherapy. Pre-operative ADC and D were negatively correlated with cellularity (r = -0.42, p = 0.01, 95% confidence interval (CI) -0.22 to -0.59 for ADC; r = -0.45, p = 0.005, 95% CI -0.25 to -0.62 for D), and fat fraction from Dixon MRI showed strong correlation with histopathological assessment of fat fraction (r = 0.79, p = 10-7, 95% CI 0.69-0.86). Conclusion: Fat fraction on MRI corresponded to fat content on histology and therefore contributes to lesion characterization. Measurement repeatability was excellent for ADC; this parameter increased significantly post-radiotherapy even in disease categorized as stable by size criteria, and corresponded to cellularity on histology. ADC can be utilized for characterizing and assessing response in heterogeneous retroperitoneal sarcomas.
RESUMEN
Quantitative radiomics features, extracted from medical images, characterize tumour-phenotypes and have been shown to provide prognostic value in predicting clinical outcomes. Stability of radiomics features extracted from apparent diffusion coefficient (ADC)-maps is essential for reliable correlation with the underlying pathology and its clinical applications. Within a multicentre, multi-vendor trial we established a method to analyse radiomics features from ADC-maps of ovarian (n = 12), lung (n = 19), and colorectal liver metastasis (n = 30) cancer patients who underwent repeated (<7 days) diffusion-weighted imaging at 1.5 T and 3 T. From these ADC-maps, 1322 features describing tumour shape, texture and intensity were retrospectively extracted and stable features were selected using the concordance correlation coefficient (CCC > 0.85). Although some features were tissue- and/or respiratory motion-specific, 122 features were stable for all tumour-entities. A large proportion of features were stable across different vendors and field strengths. By extracting stable phenotypic features, fitting-dimensionality is reduced and reliable prognostic models can be created, paving the way for clinical implementation of ADC-based radiomics.