Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Aging (Albany NY) ; 16(8): 6694-6716, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38663907

RESUMEN

Previous research has found that living in a disadvantaged neighborhood is associated with poor health outcomes. Living in disadvantaged neighborhoods may alter inflammation and immune response in the body, which could be reflected in epigenetic mechanisms such as DNA methylation (DNAm). We used robust linear regression models to conduct an epigenome-wide association study examining the association between neighborhood deprivation (Area Deprivation Index; ADI), and DNAm in brain tissue from 159 donors enrolled in the Emory Goizueta Alzheimer's Disease Research Center (Georgia, USA). We found one CpG site (cg26514961, gene PLXNC1) significantly associated with ADI after controlling for covariates and multiple testing (p-value=5.0e-8). Effect modification by APOE ε4 was statistically significant for the top ten CpG sites from the EWAS of ADI, indicating that the observed associations between ADI and DNAm were mainly driven by donors who carried at least one APOE ε4 allele. Four of the top ten CpG sites showed a significant concordance between brain tissue and tissues that are easily accessible in living individuals (blood, buccal cells, saliva), including DNAm in cg26514961 (PLXNC1). Our study identified one CpG site (cg26514961, PLXNC1 gene) that was significantly associated with neighborhood deprivation in brain tissue. PLXNC1 is related to immune response, which may be one biological pathway how neighborhood conditions affect health. The concordance between brain and other tissues for our top CpG sites could make them potential candidates for biomarkers in living individuals.


Asunto(s)
Autopsia , Islas de CpG , Metilación de ADN , Humanos , Masculino , Femenino , Islas de CpG/genética , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/genética , Encéfalo/metabolismo , Encéfalo/patología , Características del Vecindario , Epigénesis Genética , Estudio de Asociación del Genoma Completo , Estudios de Cohortes
2.
Genome Med ; 16(1): 62, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664839

RESUMEN

The "missing" heritability of complex traits may be partly explained by genetic variants interacting with other genes or environments that are difficult to specify, observe, and detect. We propose a new kernel-based method called Latent Interaction Testing (LIT) to screen for genetic interactions that leverages pleiotropy from multiple related traits without requiring the interacting variable to be specified or observed. Using simulated data, we demonstrate that LIT increases power to detect latent genetic interactions compared to univariate methods. We then apply LIT to obesity-related traits in the UK Biobank and detect variants with interactive effects near known obesity-related genes (URL: https://CRAN.R-project.org/package=lit ).


Asunto(s)
Estudio de Asociación del Genoma Completo , Obesidad , Humanos , Obesidad/genética , Epistasis Genética , Carácter Cuantitativo Heredable , Sitios de Carácter Cuantitativo , Modelos Genéticos , Polimorfismo de Nucleótido Simple , Predisposición Genética a la Enfermedad , Pleiotropía Genética , Fenotipo , Herencia Multifactorial
3.
Sci Total Environ ; 923: 171535, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38453069

RESUMEN

Air pollution and neighborhood socioeconomic status (N-SES) are associated with adverse cardiovascular health and neuropsychiatric functioning in older adults. This study examines the degree to which the joint effects of air pollution and N-SES on the cognitive decline are mediated by high cholesterol levels, high blood pressure (HBP), and depression. In the Emory Healthy Aging Study, 14,390 participants aged 50+ years from Metro Atlanta, GA, were assessed for subjective cognitive decline using the cognitive function instrument (CFI). Information on the prior diagnosis of high cholesterol, HBP, and depression was collected through the Health History Questionnaire. Participants' census tracts were assigned 3-year average concentrations of 12 air pollutants and 16 N-SES characteristics. We used the unsupervised clustering algorithm Self-Organizing Maps (SOM) to create 6 exposure clusters based on the joint distribution of air pollution and N-SES in each census tract. Linear regression analysis was used to estimate the effects of the SOM cluster indicator on CFI, adjusting for age, race/ethnicity, education, and neighborhood residential stability. The proportion of the association mediated by high cholesterol levels, HBP, and depression was calculated by comparing the total and direct effects of SOM clusters on CFI. Depression mediated up to 87 % of the association between SOM clusters and CFI. For example, participants living in the high N-SES and high air pollution cluster had CFI scores 0.05 (95 %-CI:0.01,0.09) points higher on average compared to those from the high N-SES and low air pollution cluster; after adjusting for depression, this association was attenuated to 0.01 (95 %-CI:-0.04,0.05). HBP mediated up to 8 % of the association between SOM clusters and CFI and high cholesterol up to 5 %. Air pollution and N-SES associated cognitive decline was partially mediated by depression. Only a small portion (<10 %) of the association was mediated by HBP and high cholesterol.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Disfunción Cognitiva , Hipercolesterolemia , Hipertensión , Humanos , Anciano , Hipercolesterolemia/inducido químicamente , Depresión/epidemiología , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Clase Social , Contaminantes Atmosféricos/análisis , Disfunción Cognitiva/epidemiología , Hipertensión/inducido químicamente , Colesterol , Exposición a Riesgos Ambientales , Material Particulado/análisis
4.
Front Psychiatry ; 15: 1140376, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38469033

RESUMEN

Background: Mood disorders such as major depressive and bipolar disorders, along with posttraumatic stress disorder (PTSD), schizophrenia (SCZ), and other psychotic disorders, constitute serious mental illnesses (SMI) and often lead to inpatient psychiatric care for adults. Risk factors associated with increased hospitalization rate in SMI (H-SMI) are largely unknown but likely involve a combination of genetic, environmental, and socio-behavioral factors. We performed a genome-wide association study in an African American cohort to identify possible genes associated with hospitalization due to SMI (H-SMI). Methods: Patients hospitalized for psychiatric disorders (H-SMI; n=690) were compared with demographically matched controls (n=4467). Quality control and imputation of genome-wide data were performed following the Psychiatric Genetic Consortium (PGC)-PTSD guidelines. Imputation of the Human Leukocyte Antigen (HLA) locus was performed using the HIBAG package. Results: Genome-wide association analysis revealed a genome-wide significant association at 6p22.1 locus in the ubiquitin D (UBD/FAT10) gene (rs362514, p=9.43x10-9) and around the HLA locus. Heritability of H-SMI (14.6%) was comparable to other psychiatric disorders (4% to 45%). We observed a nominally significant association with 2 HLA alleles: HLA-A*23:01 (OR=1.04, p=2.3x10-3) and HLA-C*06:02 (OR=1.04, p=1.5x10-3). Two other genes (VSP13D and TSPAN9), possibly associated with immune response, were found to be associated with H-SMI using gene-based analyses. Conclusion: We observed a strong association between H-SMI and a locus that has been consistently and strongly associated with SCZ in multiple studies (6p21.32-p22.1), possibly indicating an involvement of the immune system and the immune response in the development of severe transdiagnostic SMI.

5.
Alzheimers Dement ; 20(4): 2538-2551, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38345197

RESUMEN

INTRODUCTION: Growing evidence indicates that fine particulate matter (PM2.5) is a risk factor for Alzheimer's disease (AD), but the underlying mechanisms have been insufficiently investigated. We hypothesized differential DNA methylation (DNAm) in brain tissue as a potential mediator of this association. METHODS: We assessed genome-wide DNAm (Illumina EPIC BeadChips) in prefrontal cortex tissue and three AD-related neuropathological markers (Braak stage, CERAD, ABC score) for 159 donors, and estimated donors' residential traffic-related PM2.5 exposure 1, 3, and 5 years prior to death. We used a combination of the Meet-in-the-Middle approach, high-dimensional mediation analysis, and causal mediation analysis to identify potential mediating CpGs. RESULTS: PM2.5 was significantly associated with differential DNAm at cg25433380 and cg10495669. Twenty-four CpG sites were identified as mediators of the association between PM2.5 exposure and neuropathology markers, several located in genes related to neuroinflammation. DISCUSSION: Our findings suggest differential DNAm related to neuroinflammation mediates the association between traffic-related PM2.5 and AD. HIGHLIGHTS: First study to evaluate the potential mediation effect of DNA methylation for the association between PM2.5 exposure and neuropathological changes of Alzheimer's disease. Study was based on brain tissues rarely investigated in previous air pollution research. Cg10495669, assigned to RBCK1 gene playing a role in inflammation, was associated consistently with 1-year, 3-year, and 5-year traffic-related PM2.5 exposures prior to death. Meet-in-the-middle approach and high-dimensional mediation analysis were used simultaneously to increase the potential of identifying the differentially methylated CpGs. Differential DNAm related to neuroinflammation was found to mediate the association between traffic-related PM2.5 and Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Metilación de ADN , Humanos , Enfermedad de Alzheimer/genética , Enfermedades Neuroinflamatorias , Material Particulado/efectos adversos , Encéfalo
6.
Neurology ; 102(1): e207816, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38165375

RESUMEN

BACKGROUND AND OBJECTIVES: Prior work suggests that cognitive resilience may contribute to the heterogeneity of cognitive decline. This study examined whether distinct cortical proteins provide resilience for different cognitive abilities. METHODS: Participants were from the Religious Orders Study or the Rush Memory and Aging Project who had undergone annual assessments of 5 cognitive abilities and postmortem assessment of 9 Alzheimer disease and related dementia (ADRD) pathologies. Proteome-wide examination of the dorsolateral prefrontal cortex using tandem mass tag and liquid chromatography-mass spectrometry yielded 8,425 high-abundance proteins. We applied linear mixed-effect models to quantify residual cognitive change (cognitive resilience) of 5 cognitive abilities by regressing out cognitive decline related to age, sex, education, and indices of ADRD pathologies. Then we added terms for each of the individual proteins to identify cognitive resilience proteins associated with the different cognitive abilities. RESULTS: We included 604 decedents (69% female; mean age at death = 89 years) with proteomic data. A total of 47 cortical proteins that provide cognitive resilience were identified: 22 were associated with specific cognitive abilities, and 25 were common to at least 2 cognitive abilities. NRN1 was the only protein that was associated with more than 2 cognitive abilities (semantic memory: estimate = 0.020, SE = 0.004, p = 2.2 × 10-6; episodic memory: estimate = 0.029, SE = 0.004, p = 5.8 × 10-1; and working memory: estimate = 0.021, SE = 0.004, p = 1.2 × 10-7). Exploratory gene ontology analysis suggested that among top molecular pathways, mitochondrial translation was a molecular mechanism providing resilience in episodic memory, while nuclear-transcribed messenger RNA catabolic processes provided resilience in working memory. DISCUSSION: This study identified cortical proteins associated with various cognitive abilities. Differential associations across abilities may reflect distinct underlying biological pathways. These data provide potential high-value targets for further mechanistic and drug discovery studies to develop targeted treatments to prevent loss of cognition.


Asunto(s)
Memoria Episódica , Neuropéptidos , Resiliencia Psicológica , Femenino , Humanos , Anciano de 80 o más Años , Masculino , Proteoma , Proteómica , Cognición , Proteínas Ligadas a GPI
7.
medRxiv ; 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37961720

RESUMEN

Alzheimer's disease (AD) is currently defined at the research level by the aggregation of amyloid-ß (Aß) and tau proteins in brain. While biofluid biomarkers are available to measure Aß and tau pathology, few biomarkers are available to measure the complex pathophysiology that is associated with these two cardinal neuropathologies. Here we describe the proteomic landscape of cerebrospinal fluid (CSF) changes associated with Aß and tau pathology in 300 individuals as assessed by two different proteomic technologies-tandem mass tag (TMT) mass spectrometry and SomaScan. Harmonization and integration of both data types allowed for generation of a robust protein co-expression network consisting of 34 modules derived from 5242 protein measurements, including disease-relevant modules associated with autophagy, ubiquitination, endocytosis, and glycolysis. Three modules strongly associated with the apolipoprotein E ε4 (APOE ε4) AD risk genotype mapped to oxidant detoxification, mitogen associated protein kinase (MAPK) signaling, neddylation, and mitochondrial biology, and overlapped with a previously described lipoprotein module in serum. Neddylation and oxidant detoxification/MAPK signaling modules had a negative association with APOE ε4 whereas the mitochondrion module had a positive association with APOE ε4. The directions of association were consistent between CSF and blood in two independent longitudinal cohorts, and altered levels of all three modules in blood were associated with dementia over 20 years prior to diagnosis. Dual-proteomic platform analysis of CSF samples from an AD phase 2 clinical trial of atomoxetine (ATX) demonstrated that abnormal elevations in the glycolysis CSF module-the network module most strongly correlated to cognitive function-were reduced by ATX treatment. Individuals who had more severe glycolytic changes at baseline responded better to ATX. Clustering of individuals based on their CSF proteomic network profiles revealed ten groups that did not cleanly stratify by Aß and tau status, underscoring the heterogeneity of pathological changes not fully reflected by Aß and tau. AD biofluid proteomics holds promise for the development of biomarkers that reflect diverse pathologies for use in clinical trials and precision medicine.

8.
Mol Neurobiol ; 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37989983

RESUMEN

microRNA-29a (miR-29a) increases with age in humans and mice, and, in the brain, it has a role in neuronal maturation and response to inflammation. We previously found higher miR-29a levels in the human brain to be associated with faster antemortem cognitive decline, suggesting that lowering miR-29a levels could ameliorate memory impairment in the 5×FAD AD mouse model. To test this, we generated an adeno-associated virus (AAV) expressing GFP and a miR-29a "sponge" or empty vector. We found that the AAV expressing miR-29a sponge functionally reduced miR-29a levels and improved measures of memory in the Morris water maze and fear condition paradigms when delivered to the hippocampi of 5×FAD and WT mice. miR-29a sponge significantly reduced hippocampal beta-amyloid deposition in 5×FAD mice and lowered astrocyte and microglia activation in both 5×FAD and WT mice. Using transcriptomic and proteomic sequencing, we identified Plxna1 and Wdfy1 as putative effectors at the transcript and protein level in WT and 5×FAD mice, respectively. These data indicate that lower miR-29a levels mitigate cognitive decline, making miR-29a and its target genes worth further evaluation as targets to mitigate Alzheimer's disease (AD).

9.
bioRxiv ; 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37745553

RESUMEN

Genome-wide association studies of complex traits frequently find that SNP-based estimates of heritability are considerably smaller than estimates from classic family-based studies. This 'missing' heritability may be partly explained by genetic variants interacting with other genes or environments that are difficult to specify, observe, and detect. To circumvent these challenges, we propose a new method to detect genetic interactions that leverages pleiotropy from multiple related traits without requiring the interacting variable to be specified or observed. Our approach, Latent Interaction Testing (LIT), uses the observation that correlated traits with shared latent genetic interactions have trait variance and covariance patterns that differ by genotype. LIT examines the relationship between trait variance/covariance patterns and genotype using a flexible kernel-based framework that is computationally scalable for biobank-sized datasets with a large number of traits. We first use simulated data to demonstrate that LIT substantially increases power to detect latent genetic interactions compared to a trait-by-trait univariate method. We then apply LIT to four obesity-related traits in the UK Biobank and detect genetic variants with interactive effects near known obesity-related genes. Overall, we show that LIT, implemented in the R package lit, uses shared information across traits to improve detection of latent genetic interactions compared to standard approaches.

10.
Sci Transl Med ; 15(712): eadg4122, 2023 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-37672565

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disease with heterogenous pathophysiological changes that develop years before the onset of clinical symptoms. These preclinical changes have generated considerable interest in identifying markers for the pathophysiological mechanisms linked to AD and AD-related disorders (ADRD). On the basis of our prior work integrating cerebrospinal fluid (CSF) and brain proteome networks, we developed a reliable and high-throughput mass spectrometry-selected reaction monitoring assay that targets 48 key proteins altered in CSF. To test the diagnostic utility of these proteins and compare them with existing AD biomarkers, CSF collected at baseline visits was assayed from 706 participants recruited from the Alzheimer's Disease Neuroimaging Initiative. We found that the targeted CSF panel of 48 proteins (CSF 48 panel) performed at least as well as existing AD CSF biomarkers (Aß42, tTau, and pTau181) for predicting clinical diagnosis, FDG PET, hippocampal volume, and measures of cognitive and dementia severity. In addition, for each of those outcomes, the CSF 48 panel plus the existing AD CSF biomarkers significantly improved diagnostic performance. Furthermore, the CSF 48 panel plus existing AD CSF biomarkers significantly improved predictions for changes in FDG PET, hippocampal volume, and measures of cognitive decline and dementia severity compared with either measure alone. A potential reason for these improvements is that the CSF 48 panel reflects a range of altered biology observed in AD/ADRD. In conclusion, we show that the CSF 48 panel complements existing AD CSF biomarkers to improve diagnosis and predict future cognitive decline and dementia severity.


Asunto(s)
Enfermedad de Alzheimer , Proteínas del Líquido Cefalorraquídeo , Enfermedad de Alzheimer/líquido cefalorraquídeo , Enfermedad de Alzheimer/diagnóstico , Humanos , Pronóstico , Biomarcadores/líquido cefalorraquídeo , Masculino , Femenino , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Determinación de Punto Final , Ensayos Analíticos de Alto Rendimiento , Proteínas del Líquido Cefalorraquídeo/análisis , Tomografía de Emisión de Positrones , Hipocampo/diagnóstico por imagen , Hipocampo/patología , Tamaño de los Órganos
11.
Nat Med ; 29(8): 1979-1988, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37550416

RESUMEN

Alzheimer's disease (AD) pathology develops many years before the onset of cognitive symptoms. Two pathological processes-aggregation of the amyloid-ß (Aß) peptide into plaques and the microtubule protein tau into neurofibrillary tangles (NFTs)-are hallmarks of the disease. However, other pathological brain processes are thought to be key disease mediators of Aß plaque and NFT pathology. How these additional pathologies evolve over the course of the disease is currently unknown. Here we show that proteomic measurements in autosomal dominant AD cerebrospinal fluid (CSF) linked to brain protein coexpression can be used to characterize the evolution of AD pathology over a timescale spanning six decades. SMOC1 and SPON1 proteins associated with Aß plaques were elevated in AD CSF nearly 30 years before the onset of symptoms, followed by changes in synaptic proteins, metabolic proteins, axonal proteins, inflammatory proteins and finally decreases in neurosecretory proteins. The proteome discriminated mutation carriers from noncarriers before symptom onset as well or better than Aß and tau measures. Our results highlight the multifaceted landscape of AD pathophysiology and its temporal evolution. Such knowledge will be critical for developing precision therapeutic interventions and biomarkers for AD beyond those associated with Aß and tau.


Asunto(s)
Enfermedad de Alzheimer , Proteómica , Humanos , Enfermedad de Alzheimer/líquido cefalorraquídeo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/fisiopatología , Biomarcadores/metabolismo , Masculino , Femenino , Adulto , Persona de Mediana Edad , Mutación , Edad de Inicio
12.
Res Sq ; 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37645711

RESUMEN

microRNA-29a (miR-29a) increases with age in humans and mice, and, in the brain, it has a role in neuronal maturation and response to inflammation. We previously associated higher miR-29a levels in human brain with faster antemortem cognitive decline, suggesting that lowering miR-29a levels could ameliorate memory impairment in the 5xFAD AD mouse model. To test this hypothesis, we generated an adeno-associated virus (AAV) expressing GFP and a miR-29a "sponge" or empty vector. We found that the AAV expressing miR-29a sponge functionally reduced miR-29a levels, and improved measures of memory in the Morris water maze and fear condition paradigms when sponge delivered to hippocampi of 5XFAD and WT mice. miR-29a sponge expression significantly reduced hippocampal beta-amyloid deposition in 5XFAD mice and lowered astrocyte and microglia activation in both 5XFAD and WT mice. Using transcriptomic and proteomic sequencing, we identified Plxna1 and Wdfy1 as putative effectors at the transcript and protein level in WT and 5XFAD mice, respectively. These data indicate that miR-29a promotes AD-like neuropathology and negatively regulates cognition, making it and its target genes attractive therapeutic targets for the treatment of neurodegenerative disease.

13.
Nat Med ; 29(9): 2224-2232, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37653343

RESUMEN

Most complex human traits differ by sex, but we have limited insight into the underlying mechanisms. Here, we investigated the influence of biological sex on protein expression and its genetic regulation in 1,277 human brain proteomes. We found that 13.2% (1,354) of brain proteins had sex-differentiated abundance and 1.5% (150) of proteins had sex-biased protein quantitative trait loci (sb-pQTLs). Among genes with sex-biased expression, we found 67% concordance between sex-differentiated protein and transcript levels; however, sex effects on the genetic regulation of expression were more evident at the protein level. Considering 24 psychiatric, neurologic and brain morphologic traits, we found that an average of 25% of their putatively causal genes had sex-differentiated protein abundance and 12 putatively causal proteins had sb-pQTLs. Furthermore, integrating sex-specific pQTLs with sex-stratified genome-wide association studies of six psychiatric and neurologic conditions, we uncovered another 23 proteins contributing to these traits in one sex but not the other. Together, these findings begin to provide insights into mechanisms underlying sex differences in brain protein expression and disease.


Asunto(s)
Estudio de Asociación del Genoma Completo , Caracteres Sexuales , Femenino , Masculino , Humanos , Encéfalo , Herencia Multifactorial , Fenotipo
14.
medRxiv ; 2023 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-37066193

RESUMEN

Introduction: Higher fine particulate matter (PM2.5) exposure has been found to be associated with Alzheimer's disease (AD). PM2.5 has been hypothesized to cause inflammation and oxidative stress in the brain, contributing to neuropathology. A major genetic risk factor of AD, the apolipoprotein E (APOE) gene, has also been hypothesized to modify the association between PM2.5 and AD. However, little prior research exisits to support these hypotheses. Therefore, this paper aims to investigate the association between traffic-related PM2.5 and AD hallmark pathology, including effect modification by APOE genotype, in an autopsy cohort. Methods: Brain tissue donors enrolled in the Emory Goizueta Alzheimer's Disease Research Center (ADRC) who died before 2020 (n=224) were assessed for AD pathology including Braak Stage, Consortium to Establish a Registry for AD (CERAD) score, and the combined AD neuropathologic change (ABC score). Traffic-related PM2.5 concentrations were modeled for the metro-Atlanta area during 2002-2019 with a spatial resolution of 200-250m. One-, 3-, and 5-year average PM2.5 concentrations prior to death were matched to participants home address. We assessed the association between traffic-related PM2.5 and AD hallmark pathology, as well as effect modification by APOE genotype, using adjusted ordinal logistic regression models. Results: Traffic-related PM2.5 was significantly associated with CERAD score for the 1-year exposure window (OR: 1.92; 95% CI: 1.12, 3.30), and the 3-year exposure window (OR: 1.87; 95%-CI: 1.01, 3.17). PM2.5 had harmful, but non-significant associations on Braak Stage and ABC score. The strongest associations between PM2.5 and neuropathology markers were among those without APOE ε4 alleles (e.g., for CERAD and 1-year exposure window, OR: 2.31; 95% CI: 1.36, 3.94), though interaction between PM2.5 and APOE genotype was not statistically significant. Conclusions: Our study found traffic-related PM2.5 exposure was associated with CERAD score in an autopsy cohort, contributing to epidemiologic evidence that PM2.5 affects Aß deposition in the brain. This association was particularly strong among donors without APOE ε4 alleles. Future studies should further investigate the biological mechanisms behind this assocation.

15.
Am J Geriatr Psychiatry ; 31(9): 691-703, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37032256

RESUMEN

BACKGROUND: Purpose-in-life (PiL) refers to the tendency to derive meaning and purpose from daily life experiences. Individuals with higher PiL were more likely to have better physical, mental, and cognitive health in prospective studies. Here, we aimed to identify important correlates of PiL among people of diverse backgrounds. METHODS: Participants were recruited by the population-based Health and Retirement Study and provided information on 34 different sociodemographic and psychosocial factors through psychometrically validated measures. To identify important correlates of PiL, we employed regularized regression implemented by Elastic Net on the entire cohort as well as among self-identified black participants only and white participants only, respectively. RESULTS: A total of 6,620 participants were included in this study, among whom 913 were black and 5,707 were white. We identified 12 and 23 important sociodemographic and psychosocial correlates of PiL among black and white participants, respectively. Notably, all the 12 correlates in black participants were also correlates among white participants. Interestingly, when we examined both black and white participants together, being black was associated with having higher PiL. The correlates with the largest effect on PiL that were shared among black and white participants were hopelessness, perceived constraint on personal control, and self-mastery. CONCLUSION: Several sociodemographic and psychosocial factors most strongly associated with PiL were shared among black and white participants. Future studies should investigate whether interventions targeting correlates of PiL can lead to higher sense of life purpose in participants of diverse backgrounds.


Asunto(s)
Aprendizaje Automático , Satisfacción Personal , Humanos , Psicología , Factores Sociodemográficos , Población Negra , Población Blanca
16.
Res Sq ; 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36909654

RESUMEN

Alzheimer's disease (AD) progresses through a lengthy asymptomatic period during which pathological changes accumulate prior to development of clinical symptoms. As disease-modifying treatments are developed, tools to stratify risk of clinical disease will be required to guide their use. In this study, we examine the relationship of AD biomarkers in healthy middle-aged individuals to health history, family history, and neuropsychological measures and identify cerebrospinal fluid (CSF) biomarkers to stratify risk of progression from asymptomatic to symptomatic AD. CSF from cognitively normal (CN) individuals (N=1149) in the Emory Healthy Brain Study were assayed for Aß42, total Tau (tTau), and phospho181-Tau (pTau), and a subset of 134 cognitively normal, but biomarker-positive, individuals were identified with asymptomatic AD (AsymAD) based on a locally-determined cutoff value for ratio of tTau to Aß42. These AsymAD cases were matched for demographic features with 134 biomarker-negative controls (CN/BM-) and compared for differences in medical comorbidities and family history. Dyslipidemia emerged as a distinguishing feature between AsymAD and CN/BM-groups with significant association with personal and family history of dyslipidemia. A weaker relationship was seen with diabetes, but there was no association with hypertension. Examination of the full cohort by median regression revealed a significant relationship of CSF Aß42 (but not tTau or pTau) with dyslipidemia and diabetes. On neuropsychological tests, CSF Aß42 was not correlated with performance on any measures, but tTau and pTau were strongly correlated with visuospatial perception and visual episodic memory. In addition to traditional CSF AD biomarkers, a panel of AD biomarker peptides derived from integrating brain and CSF proteomes were evaluated using machine learning strategies to identify a set of 8 peptides that accurately classified CN/BM- and symptomatic AD CSF samples with AUC of 0.982. Using these 8 peptides in a low dimensional t-distributed Stochastic Neighbor Embedding analysis and k-Nearest Neighbor (k=5) algorithm, AsymAD cases were stratified into "Control-like" and "AD-like" subgroups based on their proximity to CN/BM- or AD CSF profiles. Independent analysis of these cases using a Joint Mutual Information algorithm selected a set of 5 peptides with 81% accuracy in stratifying cases into AD-like and Control-like subgroups. Performance of both sets of peptides was evaluated and validated in an independent data set from the Alzheimer's Disease Neuroimaging Initiative. Based on our findings, we conclude that there is an important role of lipid metabolism in asymptomatic stages of AD. Visuospatial perception and visual episodic memory may be more sensitive than language-based abilities to earliest stages of cognitive decline in AD. Finally, candidate CSF peptides show promise as next generation biomarkers for predicting progression from asymptomatic to symptomatic stages of AD.

17.
Nat Commun ; 13(1): 4314, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35882878

RESUMEN

Several common psychiatric and neurodegenerative diseases share epidemiologic risk; however, whether they share pathophysiology is unclear and is the focus of our investigation. Using 25 GWAS results and LD score regression, we find eight significant genetic correlations between psychiatric and neurodegenerative diseases. We integrate the GWAS results with human brain transcriptomes (n = 888) and proteomes (n = 722) to identify cis- and trans- transcripts and proteins that are consistent with a pleiotropic or causal role in each disease, referred to as causal proteins for brevity. Within each disease group, we find many distinct and shared causal proteins. Remarkably, 30% (13 of 42) of the neurodegenerative disease causal proteins are shared with psychiatric disorders. Furthermore, we find 2.6-fold more protein-protein interactions among the psychiatric and neurodegenerative causal proteins than expected by chance. Together, our findings suggest these psychiatric and neurodegenerative diseases have shared genetic and molecular pathophysiology, which has important ramifications for early treatment and therapeutic development.


Asunto(s)
Trastornos Mentales , Enfermedades Neurodegenerativas , Encéfalo , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo/métodos , Humanos , Trastornos Mentales/genética , Enfermedades Neurodegenerativas/genética , Polimorfismo de Nucleótido Simple
18.
Alzheimers Dement ; 2022 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-35727298

RESUMEN

INTRODUCTION: Despite an established link between depression and higher Alzheimer's disease (AD) risk, it is unclear whether the conditions share pathophysiology. Here, we investigated whether depression manifesting after age 50 is associated with a genetic predisposition to AD. METHODS: From the population-based Health and Retirement Study cohort with biennial assessments of depressive symptoms and cognitive performance, we studied 6656 individuals of European ancestry with whole-genome genotyping. Polygenic risk scores (PRSs) for AD were estimated and examined for an association with depression in cognitively normal participants using regression modeling. RESULTS: Among cognitively normal participants, those with a higher AD PRS were more likely to experience depression after age 50 after accounting for the effects of genetic predisposition to depression, sex, age, and education. DISCUSSION: Genetic predisposition to AD may be one of the factors contributing to the pathogenesis of mid-life depression. Whether there is a shared genetic basis between mid-life depression and AD merits further study.

19.
Artículo en Inglés | MEDLINE | ID: mdl-35772923

RESUMEN

OBJECTIVE: APOE is a strong risk factor for Alzheimer's disease (AD) and associated with higher low-density lipoprotein cholesterol (LDL-C) levels. Moreover, LDL-C is associated with the development of clinically ascertained AD; however, whether this association is present with the underlying neuropathological manifestations of AD or whether it is independent of the effect of APOE is unknown and is the focus of this paper. METHODS: Individuals in the Religious Orders Study/Memory and Ageing Project cohorts with longitudinal measures of blood lipids and detailed autopsies were studied. We modelled the relationship between blood lipids and 12 age-related brain pathologies using a linear mixed model adjusted for potential confounding factors and stratified by APOE genotype with overall significance determined by meta-analysis. Blood lipids considered were LDL-C, high-density lipoprotein cholesterol and triglycerides. Brain pathologies included AD pathology measured by silver staining (Braak stage, a modified Consortium to Establish a Registry for Alzheimer's Disease [CERAD] score and global AD pathology) and immunohistochemistry (beta-amyloid and neurofibrillary tangles) as well as cerebral microinfarct, cerebral macroinfarct, cerebral amyloid angiopathy, cerebral atherosclerosis, hippocampal sclerosis, TDP-43 cytoplasmic inclusions and Lewy bodies. RESULTS: 559 participants (69.1% female) had complete data for analysis. They were followed for a median of 7 years and a median of 3 years prior to dementia onset. LDL-C was associated with all measures of AD neuropathology (neurofibrillary tangles, beta-amyloid, Braak stage, modified CERAD score and global AD pathology) and cerebral amyloid angiopathy independent of APOE after adjusting for age, sex, cholesterol-lowering medication use, body mass index, smoking and education at false discovery rate (FDR) p-value <0.05. CONCLUSIONS: These findings implicate LDL-C in the pathophysiology of AD independent of APOE and suggest LDL-C is a modifiable risk factor for AD.

20.
Heliyon ; 8(5): e09353, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35600441

RESUMEN

Mitochondrial respiratory chain (RC) function requires the stoichiometric interaction among dozens of proteins but their co-regulation has not been defined in the human brain. Here, using quantitative proteomics across three independent cohorts we systematically characterized the co-regulation patterns of mitochondrial RC proteins in the human dorsolateral prefrontal cortex (DLPFC). Whereas the abundance of RC protein subunits that physically assemble into stable complexes were correlated, indicating their co-regulation, RC assembly factors exhibited modest co-regulation. Within complex I, nuclear DNA-encoded subunits exhibited >2.5-times higher co-regulation than mitochondrial (mt)DNA-encoded subunits. Moreover, mtDNA copy number was unrelated to mtDNA-encoded subunits abundance, suggesting that mtDNA content is not limiting. Alzheimer's disease (AD) brains exhibited reduced abundance of complex I RC subunits, an effect largely driven by a 2-4% overall lower mitochondrial protein content. These findings provide foundational knowledge to identify molecular mechanisms contributing to age- and disease-related erosion of mitochondrial function in the human brain.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA