Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biol Psychiatry ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38945387

RESUMEN

BACKGROUND: Diverse antidepressants were recently described to bind to TrkB and drive a positive allosteric modulation of endogenous BDNF. Although neurotrophins such as BDNF can bind to the p75 neurotrophin receptor (p75NTR), their precursors are the high affinity p75NTR ligands. While part of an unrelated receptor family capable of inducing completely opposite physiological changes, TrkB and p75NTR feature a cross-like conformation dimer and carry a cholesterol-recognition and alignment consensus in the transmembrane domain. Since such qualities were found crucial for antidepressants to bind to TrkB and drive behavioral and neuroplasticity effects, we hypothesized that their effects might also depend on p75NTR. METHODS: ELISA-based binding assay and NMR spectroscopy were accomplished to assess whether antidepressants would bind to p75NTR. HEK293T cells and a variety of in vitro assays were used to address whether fluoxetine (FLX) or ketamine (KET) would trigger any α- and γ-secretase-dependent p75NTR proteolysis, and lead to p75NTR nuclear localization. Ocular dominance shift was performed with male and female p75KO mice to study the effects of KET and FLX on brain plasticity, in addition to pharmacological interventions to verifying how p75NTR signaling is important for the effects of KET and FLX in enhancing extinction memory in male WT mice and rats. RESULTS: Antidepressants were found binding to p75NTR, FLX and KET triggered the p75NTR proteolytic pathway and induced p75NTR-dependent behavioral/neuroplasticity changes. CONCLUSION: We thus hypothesize that antidepressants co-opt both BDNF/TrkB and proBDNF/p75NTR systems to induce a more efficient activity-dependent synaptic competition, thereby boosting the brain ability for remodeling.

2.
Neuropsychopharmacology ; 48(7): 1021-1030, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36944718

RESUMEN

Critical period-like plasticity (iPlasticity) can be reinstated in the adult brain by several interventions, including drugs and optogenetic modifications. We have demonstrated that a combination of iPlasticity with optimal training improves behaviors related to neuropsychiatric disorders. In this context, the activation of TrkB, a receptor for BDNF, in Parvalbumin-positive (PV+) interneurons has a pivotal role in cortical network changes. However, it is unknown if the activation of TrkB in PV+ interneurons is important for other plasticity-related behaviors, especially for learning and memory. Here, using mice with heterozygous conditional TrkB deletion in PV+ interneurons (PV-TrkB hCKO) in IntelliCage and fear erasure paradigms, we show that chronic treatment with fluoxetine, a widely prescribed antidepressant drug that is known to promote the activation of TrkB, enhances behavioral flexibility in spatial and fear memory, largely depending on the expression of the TrkB receptor in PV+ interneurons. In addition, hippocampal long-term potentiation was enhanced by chronic treatment with fluoxetine in wild-type mice, but not in PV-TrkB hCKO mice. Transcriptomic analysis of PV+ interneurons after fluoxetine treatment indicated intrinsic changes in synaptic formation and downregulation of enzymes involved in perineuronal net formation. Consistently, immunohistochemistry has shown that the fluoxetine treatment alters PV expression and reduces PNNs in PV+ interneurons, and here we show that TrkB expression in PV+ interneurons is required for these effects. Together, our results provide molecular and network mechanisms for the induction of critical period-like plasticity in adulthood.


Asunto(s)
Parvalbúminas , Aprendizaje Inverso , Ratones , Animales , Parvalbúminas/metabolismo , Fluoxetina/farmacología , Receptor trkB/metabolismo , Interneuronas/fisiología , Miedo , Antidepresivos/farmacología , Antidepresivos/metabolismo
3.
Mol Psychiatry ; 26(12): 7247-7256, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34321594

RESUMEN

Elevated states of brain plasticity typical for critical periods of early postnatal life can be reinstated in the adult brain through interventions, such as antidepressant treatment and environmental enrichment, and induced plasticity may be critical for the antidepressant action. Parvalbumin-positive (PV) interneurons regulate the closure of developmental critical periods and can alternate between high and low plasticity states in response to experience in adulthood. We now show that PV plasticity states and cortical networks are regulated through the activation of TrkB neurotrophin receptors. Visual cortical plasticity induced by fluoxetine, a widely prescribed selective serotonin reuptake inhibitor (SSRI) antidepressant, was lost in mice with reduced expression of TrkB in PV interneurons. Conversely, optogenetic gain-of-function studies revealed that activation of an optically activatable TrkB (optoTrkB) specifically in PV interneurons switches adult cortical networks into a state of elevated plasticity within minutes by decreasing the intrinsic excitability of PV interneurons, recapitulating the effects of fluoxetine. TrkB activation shifted cortical networks towards a low PV configuration, promoting oscillatory synchrony, increased excitatory-inhibitory balance, and ocular dominance plasticity. OptoTrkB activation promotes the phosphorylation of Kv3.1 channels and reduces the expression of Kv3.2 mRNA providing a mechanism for the lower excitability. In addition, decreased expression and puncta of Synaptotagmin2 (Syt2), a presynaptic marker of PV interneurons involved in Ca2+-dependent neurotransmitter release, suggests lower inputs onto pyramidal neurons suppressing feed-forward inhibition. Together, the results provide mechanistic insights into how TrkB activation in PV interneurons orchestrates the activity of cortical networks and mediating antidepressant responses in the adult brain.


Asunto(s)
Interneuronas , Plasticidad Neuronal , Corteza Visual , Animales , Interneuronas/metabolismo , Ratones , Plasticidad Neuronal/fisiología , Parvalbúminas/metabolismo , Transmisión Sináptica , Sinaptotagmina II/metabolismo , Corteza Visual/metabolismo
4.
Cell ; 184(5): 1299-1313.e19, 2021 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-33606976

RESUMEN

It is unclear how binding of antidepressant drugs to their targets gives rise to the clinical antidepressant effect. We discovered that the transmembrane domain of tyrosine kinase receptor 2 (TRKB), the brain-derived neurotrophic factor (BDNF) receptor that promotes neuronal plasticity and antidepressant responses, has a cholesterol-sensing function that mediates synaptic effects of cholesterol. We then found that both typical and fast-acting antidepressants directly bind to TRKB, thereby facilitating synaptic localization of TRKB and its activation by BDNF. Extensive computational approaches including atomistic molecular dynamics simulations revealed a binding site at the transmembrane region of TRKB dimers. Mutation of the TRKB antidepressant-binding motif impaired cellular, behavioral, and plasticity-promoting responses to antidepressants in vitro and in vivo. We suggest that binding to TRKB and allosteric facilitation of BDNF signaling is the common mechanism for antidepressant action, which may explain why typical antidepressants act slowly and how molecular effects of antidepressants are translated into clinical mood recovery.


Asunto(s)
Antidepresivos/farmacología , Receptor trkB/metabolismo , Animales , Antidepresivos/química , Antidepresivos/metabolismo , Sitios de Unión , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Línea Celular , Colesterol/metabolismo , Embrión de Mamíferos , Fluoxetina/química , Fluoxetina/metabolismo , Fluoxetina/farmacología , Hipocampo/metabolismo , Humanos , Ratones , Modelos Animales , Simulación de Dinámica Molecular , Dominios Proteicos , Ratas , Receptor trkB/química , Corteza Visual/metabolismo
5.
J Neurosci ; 41(5): 972-980, 2021 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-33293360

RESUMEN

Perineuronal nets (PNNs) are an extracellular matrix structure rich in chondroitin sulfate proteoglycans (CSPGs), which preferentially encase parvalbumin-containing (PV+) interneurons. PNNs restrict cortical network plasticity but the molecular mechanisms involved are unclear. We found that reactivation of ocular dominance plasticity in the adult visual cortex induced by chondroitinase ABC (chABC)-mediated PNN removal requires intact signaling by the neurotrophin receptor TRKB in PV+ neurons. Additionally, we demonstrate that chABC increases TRKB phosphorylation (pTRKB), while PNN component aggrecan attenuates brain-derived neurotrophic factor (BDNF)-induced pTRKB in cortical neurons in culture. We further found that protein tyrosine phosphatase σ (PTPσ, PTPRS), receptor for CSPGs, interacts with TRKB and restricts TRKB phosphorylation. PTPσ deletion increases phosphorylation of TRKB in vitro and in vivo in male and female mice, and juvenile-like plasticity is retained in the visual cortex of adult PTPσ-deficient mice (PTPσ+/-). The antidepressant drug fluoxetine, which is known to promote TRKB phosphorylation and reopen critical period-like plasticity in the adult brain, disrupts the interaction between TRKB and PTPσ by binding to the transmembrane domain of TRKB. We propose that both chABC and fluoxetine reopen critical period-like plasticity in the adult visual cortex by promoting TRKB signaling in PV+ neurons through inhibition of TRKB dephosphorylation by the PTPσ-CSPG complex.SIGNIFICANCE STATEMENT Critical period-like plasticity can be reactivated in the adult visual cortex through disruption of perineuronal nets (PNNs) by chondroitinase treatment, or by chronic antidepressant treatment. We now show that the effects of both chondroitinase and fluoxetine are mediated by the neurotrophin receptor TRKB in parvalbumin-containing (PV+) interneurons. We found that chondroitinase-induced visual cortical plasticity is dependent on TRKB in PV+ neurons. Protein tyrosine phosphatase σ (PTPσ, PTPRS), a receptor for PNNs, interacts with TRKB and inhibits its phosphorylation, and chondroitinase treatment or deletion of PTPσ increases TRKB phosphorylation. Antidepressant fluoxetine disrupts the interaction between TRKB and PTPσ, thereby increasing TRKB phosphorylation. Thus, juvenile-like plasticity induced by both chondroitinase and antidepressant treatment is mediated by TRKB activation in PV+ interneurons.


Asunto(s)
Antidepresivos/farmacología , Condroitinasas y Condroitín Liasas/farmacología , Glicoproteínas de Membrana/metabolismo , Plasticidad Neuronal/fisiología , Neuronas/metabolismo , Parvalbúminas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/metabolismo , Animales , Células Cultivadas , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Transgénicos , Plasticidad Neuronal/efectos de los fármacos , Neuronas/efectos de los fármacos , Fosforilación/efectos de los fármacos , Fosforilación/fisiología
6.
eNeuro ; 7(4)2020.
Artículo en Inglés | MEDLINE | ID: mdl-32788298

RESUMEN

NETO2 is an auxiliary subunit for kainate-type glutamate receptors that mediate normal cued fear expression and extinction. Since the amygdala is critical for these functions, we asked whether Neto2-/- mice have compromised amygdala function. We measured the abundance of molecular markers of neuronal maturation and plasticity, parvalbumin-positive (PV+), perineuronal net-positive (PNN+), and double positive (PV+PNN+) cells in the Neto2-/- amygdala. We found that Neto2-/- adult, but not postnatal day (P)23, mice had 7.5% reduction in the fraction of PV+PNN+ cells within the total PNN+ population, and 23.1% reduction in PV staining intensity compared with Neto2+/+ mice, suggesting that PV interneurons in the adult Neto2-/- amygdala remain in an immature state. An immature PV inhibitory network would be predicted to lead to stronger amygdalar excitation. In the amygdala of adult Neto2-/- mice, we identified increased glutamatergic and reduced GABAergic transmission using whole-cell patch-clamp recordings. This was accompanied by increased spine density of thin dendrites in the basal amygdala (BA) compared with Neto2+/+ mice, indicating stronger glutamatergic synapses. Moreover, after fear acquisition Neto2-/- mice had a higher number of c-Fos-positive cells than Neto2+/+ mice in the lateral amygdala (LA), BA, and central amygdala (CE). Altogether, our findings indicate that Neto2 is involved in the maturation of the amygdala PV interneuron network. Our data suggest that this defect, together with other processes influencing amygdala principal neurons, contribute to increased amygdalar excitability, higher fear expression, and delayed extinction in cued fear conditioning, phenotypes that are common in fear-related disorders, including the posttraumatic stress disorder (PTSD).


Asunto(s)
Miedo , Receptores de Ácido Kaínico , Amígdala del Cerebelo/metabolismo , Animales , Interneuronas/metabolismo , Proteínas de la Membrana , Ratones , Parvalbúminas/metabolismo , Receptores de Ácido Kaínico/genética , Receptores de Ácido Kaínico/metabolismo
7.
Psychiatry Clin Neurosci ; 72(9): 633-653, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29802758

RESUMEN

The network hypothesis of depression proposes that mood disorders reflect problems in information processing within particular neural networks. Antidepressants (AD), including selective serotonin reuptake inhibitors (SSRI), function by gradually improving information processing within these networks. AD have been shown to induce a state of juvenile-like plasticity comparable to that observed during developmental critical periods: Such critical-period-like plasticity allows brain networks to better adapt to extrinsic and intrinsic signals. We have coined this drug-induced state of juvenile-like plasticity 'iPlasticity.' A combination of iPlasticity induced by chronic SSRI treatment together with training, rehabilitation, or psychotherapy improves symptoms of neuropsychiatric disorders and issues underlying the developmentally or genetically malfunctioning networks. We have proposed that iPlasticity might be a critical component of AD action. We have demonstrated that iPlasticity occurs in the visual cortex, fear erasure network, extinction of aggression caused by social isolation, and spatial reversal memory in rodent models. Chronic SSRI treatment is known to promote neurogenesis and to cause dematuration of granule cells in the dentate gyrus and of interneurons, especially parvalbumin interneurons enwrapped by perineuronal nets in the prefrontal cortex, visual cortex, and amygdala. Brain-derived neurotrophic factor (BDNF), via its receptor tropomyosin kinase receptor B, is involved in the processes of synaptic plasticity, including neurogenesis, neuronal differentiation, weight of synapses, and gene regulation of synaptic formation. BDNF can be activated by both chronic SSRI treatment and neuronal activity. Accordingly, the BDNF/tropomyosin kinase receptor B pathway is critical for iPlasticity, but further analyses will be needed to provide mechanical insight into the processes of iPlasticity.


Asunto(s)
Encéfalo/efectos de los fármacos , Encéfalo/fisiología , Plasticidad Neuronal/efectos de los fármacos , Plasticidad Neuronal/fisiología , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Animales , Factor Neurotrófico Derivado del Encéfalo/fisiología , Humanos , Neurogénesis/efectos de los fármacos , Neurogénesis/fisiología , Receptor trkB/fisiología
8.
Int J Dev Neurosci ; 44: 55-64, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25997908

RESUMEN

The in utero exposure to common chemical stressors, environmental pollutant methylmercury and antidepressant fluoxetine, results in behavioral impairments persistent into adulthood. Modulation of critical periods in brain development may alter proper network formation and lastingly impair brain function. To investigate whether early-life stressors can modulate critical periods, we analyzed the development of parvalbumin (PV) and perineuronal nets (PNNs) in the dentate gyrus and CA1 area of the hippocampus and the basolateral amygdala in mice perinatally exposed to either fluoxetine or methylmercury. The number of PV and PNN neurons, and PV intensity, were analyzed by fluorescent immunohistochemistry at the postnatal ages P17 (ongoing critical period) and P24 (closing critical period). The exposure to fluoxetine did not affect the number of PV cells and PV intensity but decreased PNN formation around the cells at P17 and P24 in all tissues. In contrast, perinatal methylmercury inhibited the development of PV interneurons and PV expression at P17 only, but at P24 these parameters were restored. Methylmercury strongly increased PNN formation from P17 to P24 in the amygdala only. We suggest that perinatal fluoxetine and methylmercury might delay the closure and the onset, respectively, of the critical periods in the amygdala and hippocampus.


Asunto(s)
Encéfalo , Fluoxetina/toxicidad , Compuestos de Metilmercurio/toxicidad , Red Nerviosa/patología , Parvalbúminas/metabolismo , Efectos Tardíos de la Exposición Prenatal/patología , Inhibidores Selectivos de la Recaptación de Serotonina/toxicidad , Factores de Edad , Animales , Animales Recién Nacidos , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Encéfalo/patología , Recuento de Células , Proteínas de la Matriz Extracelular/metabolismo , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Microscopía Confocal , Red Nerviosa/metabolismo , Embarazo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...