Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
2.
Front Immunol ; 14: 1175926, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37292200

RESUMEN

Introduction: Preeclampsia is a life-threatening disorder of pregnancy unique to humans. Interleukin (IL)11 is elevated in serum from pregnancies that subsequently develop early-onset preeclampsia and pharmacological elevation of IL11 in pregnant mice causes the development of early-onset preeclampsia-like features (hypertension, proteinuria, and fetal growth restriction). However, the mechanism by which IL11 drives preeclampsia is unknown. Method: Pregnant mice were administered PEGylated (PEG)IL11 or control (PEG) from embryonic day (E)10-16 and the effect on inflammasome activation, systolic blood pressure (during gestation and at 50/90 days post-natal), placental development, and fetal/post-natal pup growth measured. RNAseq analysis was performed on E13 placenta. Human 1st trimester placental villi were treated with IL11 and the effect on inflammasome activation and pyroptosis identified by immunohistochemistry and ELISA. Result: PEGIL11 activated the placental inflammasome causing inflammation, fibrosis, and acute and chronic hypertension in wild-type mice. Global and placental-specific loss of the inflammasome adaptor protein Asc and global loss of the Nlrp3 sensor protein prevented PEGIL11-induced fibrosis and hypertension in mice but did not prevent PEGIL11-induced fetal growth restriction or stillbirths. RNA-sequencing and histology identified that PEGIL11 inhibited trophoblast differentiation towards spongiotrophoblast and syncytiotrophoblast lineages in mice and extravillous trophoblast lineages in human placental villi. Discussion: Inhibition of ASC/NLRP3 inflammasome activity could prevent IL11-induced inflammation and fibrosis in various disease states including preeclampsia.


Asunto(s)
Hipertensión , Preeclampsia , Embarazo , Femenino , Humanos , Ratones , Animales , Placenta/metabolismo , Inflamasomas/metabolismo , Interleucina-11/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Preeclampsia/metabolismo , Retardo del Crecimiento Fetal/metabolismo , Placentación , Inflamación/metabolismo , Fibrosis
3.
J Vis Exp ; (194)2023 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-37092827

RESUMEN

For pregnancy to be established, a viable blastocyst must successfully interact with a receptive uterine lining (endometrium) to facilitate implantation and placenta formation and enable ongoing pregnancy. The limitations to pregnancy success caused by embryonic defects are well known and have been largely overcome in recent decades with the rise of in vitro fertilization (IVF) and assisted reproductive technologies. As yet, however, the field has not overcome the limitations caused by an inadequately receptive endometrium, thus resulting in stagnating IVF success rates. Ovarian and endometrial functions are closely intertwined, as hormones produced by the ovary are responsible for the endometrium's menstrual cyclicity. As such, when using rodent models of pregnancy, it can be difficult to ascertain whether an observed result is due to an ovarian or uterine deficit. To overcome this, an ovariectomized mouse model was developed with embryo transfer or artificial decidualization to allow the study of uterine-specific contributions to pregnancy. This article will provide instructions on how to perform ovariectomy and offer insights into various techniques for supplying exogenous hormones to support successful artificial decidualization or pregnancy following embryo transfer from healthy donors. These techniques include subcutaneous injection, slow-release pellets, and osmotic mini pumps. The key advantages and disadvantages of each method will be discussed, enabling researchers to choose the best study design for their specific research question.


Asunto(s)
Implantación del Embrión , Útero , Embarazo , Femenino , Animales , Ratones , Endometrio , Transferencia de Embrión/métodos , Modelos Animales de Enfermedad , Hormonas
4.
Reprod Fertil ; 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37068157

RESUMEN

Cytotoxic chemotherapies have been a mainstay of cancer treatment, but are associated with numerous systemic adverse effects, including impacts to fertility and endocrine health. Irreversible ovarian damage and follicle depletion are side-effects of chemotherapy that can lead to infertility and premature menopause, both being major concerns of young cancer patients. Notably, many women will proceed with fertility preservation, but unfortunately existing strategies don't entirely solve the problem. Most significantly, oocyte and embryo freezing do not prevent cancer treatment-induced ovarian damage from occurring, which may result in the impairment of long-term hormone production. Unfortunately, loss of endogenous endocrine function is not fully restored by hormone replacement therapy. Additionally, while GnRH agonists are standard care for patients receiving alkylating chemotherapy to lessen the risk of premature menopause, their efficacy is incomplete. The lack of more broadly effective options stems, in part, from our poor understanding of how different treatments damage the ovary. Here, we summarise the impacts of two commonly utilised chemotherapies - cyclophosphamide and cisplatin - on ovarian function and fertility, and discuss the mechanisms underpinning this damage. Additionally, we critically analyse current research avenues in the development of novel fertility preservation strategies, with a focus on fertoprotective agents.

5.
Hum Reprod Update ; 29(4): 434-456, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-36857094

RESUMEN

BACKGROUND: Regulated cell death is a fundamental component of numerous physiological processes; spanning from organogenesis in utero, to normal cell turnover during adulthood, as well as the elimination of infected or damaged cells throughout life. Quality control through regulation of cell death pathways is particularly important in the germline, which is responsible for the generation of offspring. Women are born with their entire supply of germ cells, housed in functional units known as follicles. Follicles contain an oocyte, as well as specialized somatic granulosa cells essential for oocyte survival. Follicle loss-via regulated cell death-occurs throughout follicle development and life, and can be accelerated following exposure to various environmental and lifestyle factors. It is thought that the elimination of damaged follicles is necessary to ensure that only the best quality oocytes are available for reproduction. OBJECTIVE AND RATIONALE: Understanding the precise factors involved in triggering and executing follicle death is crucial to uncovering how follicle endowment is initially determined, as well as how follicle number is maintained throughout puberty, reproductive life, and ovarian ageing in women. Apoptosis is established as essential for ovarian homeostasis at all stages of development and life. However, involvement of other cell death pathways in the ovary is less established. This review aims to summarize the most recent literature on cell death regulators in the ovary, with a particular focus on non-apoptotic pathways and their functions throughout the discrete stages of ovarian development and reproductive life. SEARCH METHODS: Comprehensive literature searches were carried out using PubMed and Google Scholar for human, animal, and cellular studies published until August 2022 using the following search terms: oogenesis, follicle formation, follicle atresia, oocyte loss, oocyte apoptosis, regulated cell death in the ovary, non-apoptotic cell death in the ovary, premature ovarian insufficiency, primordial follicles, oocyte quality control, granulosa cell death, autophagy in the ovary, autophagy in oocytes, necroptosis in the ovary, necroptosis in oocytes, pyroptosis in the ovary, pyroptosis in oocytes, parthanatos in the ovary, and parthanatos in oocytes. OUTCOMES: Numerous regulated cell death pathways operate in mammalian cells, including apoptosis, autophagic cell death, necroptosis, and pyroptosis. However, our understanding of the distinct cell death mediators in each ovarian cell type and follicle class across the different stages of life remains the source of ongoing investigation. Here, we highlight recent evidence for the contribution of non-apoptotic pathways to ovarian development and function. In particular, we discuss the involvement of autophagy during follicle formation and the role of autophagic cell death, necroptosis, pyroptosis, and parthanatos during follicle atresia, particularly in response to physiological stressors (e.g. oxidative stress). WIDER IMPLICATIONS: Improved knowledge of the roles of each regulated cell death pathway in the ovary is vital for understanding ovarian development, as well as maintenance of ovarian function throughout the lifespan. This information is pertinent not only to our understanding of endocrine health, reproductive health, and fertility in women but also to enable identification of novel fertility preservation targets.


Asunto(s)
Oocitos , Ovario , Muerte Celular Regulada , Adulto , Animales , Femenino , Humanos , Apoptosis/fisiología , Células de la Granulosa/metabolismo , Células de la Granulosa/fisiología , Mamíferos/crecimiento & desarrollo , Mamíferos/fisiología , Oocitos/crecimiento & desarrollo , Oocitos/fisiología , Folículo Ovárico/crecimiento & desarrollo , Folículo Ovárico/fisiología , Ovario/crecimiento & desarrollo , Ovario/fisiología , Muerte Celular Regulada/fisiología , Homeostasis/fisiología
6.
JCI Insight ; 8(6)2023 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-36946464

RESUMEN

Female cancer survivors are significantly more likely to experience infertility than the general population. It is well established that chemotherapy and radiotherapy can damage the ovary and compromise fertility, yet the ability of cancer treatments to induce uterine damage, and the underlying mechanisms, have been understudied. Here, we show that in mice total-body γ-irradiation (TBI) induced extensive DNA damage and apoptosis in uterine cells. We then transferred healthy donor embryos into ovariectomized adolescent female mice that were previously exposed to TBI to study the impacts of radiotherapy on the uterus independent from effects to ovarian endocrine function. Following TBI, embryo attachment and implantation were unaffected, but fetal resorption was evident at midgestation in 100% of dams, suggesting failed placental development. Consistent with this hypothesis, TBI impaired the decidual response in mice and primary human endometrial stromal cells. TBI also caused uterine artery endothelial dysfunction, likely preventing adequate blood vessel remodeling in early pregnancy. Notably, when pro-apoptotic protein Puma-deficient (Puma-/-) mice were exposed to TBI, apoptosis within the uterus was prevented, and decidualization, vascular function, and pregnancy were restored, identifying PUMA-mediated apoptosis as a key mechanism. Collectively, these data show that TBI damages the uterus and compromises pregnancy success, suggesting that optimal fertility preservation during radiotherapy may require protection of both the ovaries and uterus. In this regard, inhibition of PUMA may represent a potential fertility preservation strategy.


Asunto(s)
Proteínas Reguladoras de la Apoptosis , Placenta , Embarazo , Femenino , Humanos , Ratones , Animales , Adolescente , Proteínas Reguladoras de la Apoptosis/metabolismo , Útero/metabolismo , Implantación del Embrión/fisiología , Placentación
7.
Reproduction ; 164(6): V15-V18, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36215096

RESUMEN

Human genome-wide association studies and evidence from animal models link ovarian ageing to double-strand (ds)DNA break repair capacity. Is there a connection between single-strand (ss)DNA repair mechanisms and ovarian function? We hypothesize that endogenous cellular processes subject oocytes to ssDNA lesions, and thus, ssDNA repair capacity is fundamental to their survival and maintenance.


Asunto(s)
Roturas del ADN de Cadena Simple , Estudio de Asociación del Genoma Completo , Humanos , Animales , Reparación del ADN , Roturas del ADN de Doble Cadena , Oocitos , ADN/genética , ADN de Cadena Simple
8.
Biochimie ; 202: 71-84, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36116742

RESUMEN

Multi drug resistance (MDR) generally limits the efficacy of chemotherapy in cancer patients and can be categorized into primary or acquired resistance. Melatonin (MLT), a lipophilic hormone released from pineal gland, is a molecule with oncostatic effects. Here, we will briefly review the contribution of different microenvironmental components including fibroblasts, immune and inflammatory cells, stem cells and vascular endothelial cells in tumor initiation, progression and development. Then, the mechanisms by which MLT can potentially affect these elements and regulate drug resistance will be presented. Finally, we will explain how different studies have used novel strategies incorporating MLT to suppress cancer resistance against therapeutics.


Asunto(s)
Melatonina , Neoplasias , Humanos , Melatonina/farmacología , Melatonina/uso terapéutico , Melatonina/fisiología , Microambiente Tumoral , Células Endoteliales , Neoplasias/tratamiento farmacológico , Resistencia a Múltiples Medicamentos
9.
Nat Cancer ; 3(8): 1-13, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-36008687

RESUMEN

Loss of fertility is a major concern for female reproductive-age cancer survivors, since a common side-effect of conventional cytotoxic cancer therapies is permanent damage to the ovary. While immunotherapies are increasingly becoming a standard of care for many cancers-including in the curative setting-their impacts on ovarian function and fertility are unknown. We evaluated the effect of immune checkpoint inhibitors blocking programmed cell death protein ligand 1 and cytotoxic T lymphocyte-associated antigen 4 on the ovary using tumor-bearing and tumor-free mouse models. We find that immune checkpoint inhibition increases immune cell infiltration and tumor necrosis factor-α expression within the ovary, diminishes the ovarian follicular reserve and impairs the ability of oocytes to mature and ovulate. These data demonstrate that immune checkpoint inhibitors have the potential to impair both immediate and future fertility, and studies in women should be prioritized. Additionally, fertility preservation should be strongly considered for women receiving these immunotherapies, and preventative strategies should be investigated in future studies.


Asunto(s)
Preservación de la Fertilidad , Neoplasias , Animales , Femenino , Humanos , Inhibidores de Puntos de Control Inmunológico , Inmunoterapia/efectos adversos , Ratones , Oocitos/patología
10.
Reprod Fertil ; 3(1): 10-18, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-35198982

RESUMEN

A mouse model to study uterine specific contributions to pregnancy.Maternal environmental exposures can exert impacts on the ability of the uterus to sustain healthy pregnancy. To establish an in vivo model to study this, we designed an ovariectomized mouse embryo transfer model. The rationale being future studies could expose recipient female mice to variables such as altered diet, drug, temperature, air, or activity exposure among others to define their impacts on the uterine contribution to pregnancy. Ovariectomy ensures the extent of the variable is limited to exploring outcomes on uterine but not ovarian function. Embryo transfer from healthy, unexposed donor mice guarantees that any impacts of the variable are attributed to the maternal uterine but not the embryonic state. Pregnancy outcomes including pregnancy success (number of implantation sites) and viability (number of viable vs resorbing implantation sites) can be investigated. Numerous functional outcomes can be assessed, including developmental competence encompassing decidual, placental, fetal, and vascular morphology and/or function (e.g. measured using Doppler ultrasound, comparisons of fetal growth, or molecular or histological characterization of the decidua, placenta, and fetal tissues). LAY SUMMARY: Many pregnancy complications occur because of problems in the womb (uterus), specifically the womb lining. There is a close relationship between the hormone function of the ovaries and the uterus and distinguishing between the way they both impact pregnancy success is difficult in existing studies using animals. Here, we developed a new animal model to utilize in addressing these gaps in our understanding of pregnancy.


Asunto(s)
Placenta , Útero , Animales , Transferencia de Embrión , Femenino , Desarrollo Fetal , Ratones , Embarazo , Resultado del Embarazo
11.
J Dev Orig Health Dis ; 13(1): 39-48, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-33781367

RESUMEN

Through drinking water, humans are commonly exposed to atrazine, a herbicide that acts as an endocrine and metabolic disruptor. It interferes with steroidogenesis, including promoting oestrogen production and altering cell metabolism. However, its precise impact on uterine development remains unknown. This study aimed to determine the effect of prolonged atrazine exposure on the uterus. Pregnant mice (n = 5/group) received 5 mg/kg body weight/day atrazine or DMSO in drinking water from gestational day 9.5 until weaning. Offspring continued to be exposed until 3 or 6 months of age (n = 5-9/group), when uteri were collected for morphological and molecular analyses and steroid quantification. Endometrial hyperplasia and leiomyoma were evident in the uteri of atrazine-exposed mice. Uterine oestrogen concentration, oestrogen receptor expression, and localisation were similar between groups, at both ages (P > 0.1). The expression and localisation of key epithelial-to-mesenchymal transition (EMT) genes and proteins, critical for tumourigenesis, remained unchanged between treatments, at both ages (P > 0.1). Hence, oestrogen-mediated changes to established EMT markers do not appear to underlie abnormal uterine morphology evident in atrazine exposure mice. This is the first report of abnormal uterine morphology following prolonged atrazine exposure starting in utero, it is likely that the abnormalities identified would negatively affect female fertility, although mechanisms remain unknown and require further study.


Asunto(s)
Atrazina/efectos adversos , Efectos Tardíos de la Exposición Prenatal/etiología , Útero/efectos de los fármacos , Animales , Atrazina/metabolismo , Modelos Animales de Enfermedad , Femenino , Ratones , Ratones Endogámicos C57BL/metabolismo , Embarazo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Efectos Tardíos de la Exposición Prenatal/patología , Útero/patología , Útero/fisiopatología
12.
J Vis Exp ; (164)2020 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-33135690

RESUMEN

Sexually reproducing female mammals are born with their entire lifetime supply of oocytes. Immature, quiescent oocytes are found within primordial follicles, the storage unit of the female germline. They are non-renewable, thus their number at birth and subsequent rate of loss largely dictates the female fertile lifespan. Accurate quantification of primordial follicle numbers in women and animals is essential for determining the impact of medicines and toxicants on the ovarian reserve. It is also necessary for evaluating the need for, and success of, existing and emerging fertility preservation techniques. Currently, no methods exist to accurately measure the number of primordial follicles comprising the ovarian reserve in women. Furthermore, obtaining ovarian tissue from large animals or endangered species for experimentation is often not feasible. Thus, mice have become an essential model for such studies, and the ability to evaluate primordial follicle numbers in whole mouse ovaries is a critical tool. However, reports of absolute follicle numbers in mouse ovaries in the literature are highly variable, making it difficult to compare and/or replicate data. This is due to a number of factors including strain, age, treatment groups, as well as technical differences in the methods of counting employed. In this article, we provide a step-by-step instructional guide for preparing histological sections and counting primordial follicles in mouse ovaries using two different methods: [1] stereology, which relies on the fractionator/optical dissector technique; and [2] the direct count technique. Some of the key advantages and drawbacks of each method will be highlighted so that reproducibility can be improved in the field and to enable researchers to select the most appropriate method for their studies.


Asunto(s)
Envejecimiento/fisiología , Folículo Ovárico/fisiología , Animales , Femenino , Ratones Endogámicos C57BL , Adhesión en Parafina , Reproducibilidad de los Resultados , Programas Informáticos , Fijación del Tejido
13.
J Ovarian Res ; 13(1): 121, 2020 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-33054849

RESUMEN

BACKGROUND: Accurate evaluation of primordial follicle numbers in mouse ovaries is an essential endpoint for studies investigating how endogenous and exogenous insults, such as maternal aging and chemotherapy, impact the ovarian reserve. In this study, we compared and contrasted two methods for counting healthy primordial follicles following exposure to cyclophosphamide (75 mg/kg), a well-established model of follicle depletion. The first was the fractionator/optical dissector technique, an unbiased, assumption-free stereological approach for quantification of primordial follicle numbers. While accurate, highly reproducible and sensitive, this method relies on specialist microscopy equipment and software, requires specific fixation, embedding and sectioning parameters to be followed, and is largely a manual process that is tedious and time-consuming. The second method was the more widely used serial section and direct count approach, which is relatively quick and easy. We also compared the impacts of different fixatives, embedding material and section thickness on the overall results for each method. RESULTS: Direct counts resulted in primordial follicle numbers that were significantly lower than those obtained by stereology, irrespective of fixation and embedding material. When applied to formalin fixed tissue, the direct count method did not detect differences in follicle numbers between saline and cyclophosphamide treated groups to the same degree of sensitivity as the gold standard stereology method (referred to as the Reference standard). However, when Bouin's fixative was used, direct counts and stereology were comparable in their ability to detect follicle depletion caused by cyclophosphamide. CONCLUSIONS: This work indicates that the direct count method can produce similar results to stereology when Bouin's fixative is used instead of formalin. The findings presented here will assist others to select the most appropriate experimental approach for accurate follicle enumeration, depending on whether the primary objective of the study is to determine absolute primordial follicle numbers or relative differences between groups.


Asunto(s)
Folículo Ovárico/ultraestructura , Ovario/ultraestructura , Animales , Femenino , Ratones
14.
Hum Reprod ; 35(8): 1864-1874, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32604417

RESUMEN

STUDY QUESTION: What is the impact of the poly(ADP-ribose) polymerase (PARP) inhibitor, olaparib, alone or in combination with chemotherapy on the ovary in mice? SUMMARY ANSWER: Olaparib treatment, when administered alone, depletes primordial follicle oocytes, but olaparib does not exacerbate chemotherapy-mediated ovarian follicle loss in mice. WHAT IS KNOWN ALREADY: The ovary contains a finite number of oocytes stored within primordial follicles, which give rise to all mature ovulatory oocytes. Unfortunately, they are highly sensitive to exogenous DNA damaging insults, such as cytotoxic cancer treatments. Members of the PARP family of enzymes are central to the repair of single-strand DNA breaks. PARP inhibitors have shown promising clinical efficacy in reducing tumour burden, by blocking DNA repair capacity. Olaparib is a PARP1/2 inhibitor recently FDA-approved for treatment of BRCA1 and BRCA2 mutation carriers with metastatic breast cancer. It is currently being investigated as an adjunct to standard treatment at an earlier stage, potentially curable, BRCA1- and BRCA2-associated breast cancer which affects reproductive age women. Despite this, there is no preclinical or clinical information regarding the potential impacts of olaparib on the ovary or on female fertility. Unfortunately, it may be many years before clinical data on fertility outcomes for women treated with PARP inhibitors becomes available, highlighting the importance of rigorous preclinical research using animal models to establish the potential for new cancer therapies to affect the ovary in humans. We aimed to comprehensively determine the impact of olaparib alone, or following chemotherapy, on the ovary in mice. STUDY DESIGN, SIZE, DURATION: On Day 0, mice (n = 5/treatment group) were administered a single intraperitoneal dose of cyclophosphamide (75 mg/kg/body weight), doxorubicin (10 mg/kg), carboplatin (80 mg/kg), paclitaxel (7.5 mg/kg) or vehicle control. From Days 1 to 28, mice were administered subcutaneous olaparib (50 mg/kg) or vehicle control. This regimen is proven to reduce tumour burden in preclinical mouse studies and is also physiologically relevant for women. PARTICIPANTS/MATERIALS, SETTING, METHODS: Adult female wild-type C57BL6/J mice at peak fertility (8 weeks) were administered a single intraperitoneal dose of chemotherapy, or vehicle, then either subcutaneous olaparib or vehicle for 28 days. Vaginal smears were performed on each animal for 14 consecutive days from Days 15 to 28 to monitor oestrous cycling. At 24 h after final treatment, ovaries were harvested for follicle enumeration and immunohistochemical analysis of primordial follicle remnants (FOXL2 expressing granulosa cells), DNA damage (γH2AX) and analysis of apoptosis by TUNEL assay. Serum was collected to measure circulating anti-Müllerian hormone (AMH) concentrations by ELISA. MAIN RESULTS AND THE ROLE OF CHANCE: Olaparib significantly depleted primordial follicles by 36% compared to the control (P < 0.05) but had no impact on other follicle classes, serum AMH, corpora lutea number (indicative of ovulation) or oestrous cycling. Primordial follicle remnants were rarely detected in control ovaries but were significantly elevated in ovaries from mice treated with olaparib alone (P < 0.05). Similarly, DNA damage denoted by γH2AX foci was completely undetectable in primordial follicles of control animals but was observed in ∼10% of surviving primordial follicle oocytes in mice treated with olaparib alone. These observations suggest that functional PARPs are essential for primordial follicle oocyte maintenance and survival. Olaparib did not exacerbate chemotherapy-mediated follicle depletion in the wild-type mouse ovary. LARGE SCALE DATA: N/A. LIMITATIONS, REASONS FOR CAUTION: This study was performed in mice, so the findings may not translate to women and further studies utilizing human ovarian tissue and sera samples should be performed in the future. Only one long-term time point was analysed, therefore olaparib-mediated follicle damage should be assessed at more immediate time points in the future to support our mechanistic findings. WIDER IMPLICATIONS OF THE FINDINGS: Olaparib dramatically depleted primordial follicles and this could be attributed to loss of intrinsic PARP-mediated DNA repair mechanisms. Importantly, diminished ovarian reserve can result in premature ovarian insufficiency and infertility. Notably, the extent of follicle depletion might be enhanced in BRCA1 and BRCA2 mutation carriers, and this is the subject of current investigations. Together, our data suggest that fertility preservation options should be considered for young women prior to olaparib treatment, and that human studies of this issue should be prioritized. STUDY FUNDING/COMPETING INTEREST(S): This work was made possible through Victorian State Government Operational Infrastructure Support and Australian Government NHMRC IRIISS. This work was supported by funding from the National Health and Medical Research Council (NHMRC); (K.J.H. #1050130) (A.L.W. #1120300). K.A.P. is a National Breast Cancer Foundation Fellow (Australia-PRAC-17-004). K.A.P. is the Breast Cancer Trials (Australia) Study Chair for the OlympiA clinical trial sponsored by AstraZeneca, the manufacturer of olaparib. All other authors declare no competing financial or other interests.


Asunto(s)
Preservación de la Fertilidad , Reserva Ovárica , Adulto , Animales , Australia , Femenino , Humanos , Ratones , Ftalazinas , Piperazinas , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología
15.
Hum Reprod Update ; 26(2): 161-173, 2020 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-31863097

RESUMEN

BACKGROUND: As cancer survival rates improve, understanding and preventing the adverse off-target and long-term impacts of cancer treatments, including impacts on fertility, have become increasingly important. Cancer therapy-mediated damage to the ovary and depletion of the primordial follicle reserve are well characterised. However, our knowledge of the full extent of damage to the rest of the female reproductive tract, in particular the uterus, is limited. OBJECTIVE AND RATIONALE: Improving our understanding of the off-target effects of cancer therapies on the entire female reproductive tract is a critical step towards developing truly effective strategies to protect the fertility of cancer survivors. The objective of this narrative review was to critically evaluate the available literature regarding the capacity for the uterus to sustain a healthy pregnancy following exposure to radiotherapy or chemotherapy. SEARCH METHODS: The authors performed PubMed (Medline) searches using the following key words: uterus, cancer survivors, radiotherapy, chemotherapy, pregnancy outcome, fertility preservation, infertility. There were no limits placed on time of publication. OUTCOMES: Overall, there were major limitations to the current available literature, meaning that interpretations should be taken with caution. Despite these drawbacks, data suggest that the uterus may sustain off-target damage, with the extent of damage dependent on the type of cancer treatment and patient age. Specifically, uterine growth is stunted and resistant to hormone replacement therapy in prepubertal girls receiving abdominal, pelvic or whole-body radiotherapy. In contrast, females treated with radiotherapy post-puberty can benefit from hormone replacement therapy, as demonstrated by increased uterine volume and function. No live births have been reported in women previously exposed to radiotherapy after transplantation of cryopreserved ovarian tissue, even when menstruation returns. However, this technique has proven to be a successful fertility preservation method for women previously treated with chemotherapy. Obstetricians commonly report that women who maintain sufficient ovarian function can achieve pregnancy naturally following radiotherapy, but they have thin and/or fibrotic myometrium at delivery, compromising safe delivery and subsequent pregnancy. Furthermore, women exposed to either radiotherapy or chemotherapy have a higher prevalence of preterm birth and low birth weight infants, even in those with normal ovarian function or when oocyte donation is utilised. The mechanisms of potential uterine damage are poorly understood. While the myometrium, vasculature and endometrial progenitor cells are possibly targets, further studies are clearly required and well-controlled animal models could provide the best avenue for these types of future investigations. WIDER IMPLICATIONS: Female cancer survivors experience greater rates of early pregnancy loss and complications, suggesting that cancer therapy-induced damage to the uterus contributes to infertility. Despite clinical reports dating back to 1989, we highlight a surprising lack of detail in the literature regarding the precise nature and extent of off-target damage inflicted to the uterus in response to cancer therapies. Young women requiring cancer treatment, and the clinicians treating them, must be equipped with accurate information to aid informed decision-making regarding cancer treatment regimens as well as the development and use of effective fertility preservation measures. As the current literature on the impacts of cancer treatments is limited, we hope that our narrative review on this subject will stimulate more research in this important field.


Asunto(s)
Protocolos Antineoplásicos , Fertilidad/fisiología , Neoplasias/terapia , Resultado del Embarazo , Enfermedades Uterinas , Útero/patología , Animales , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/epidemiología , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/patología , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/fisiopatología , Femenino , Fertilidad/efectos de los fármacos , Fertilidad/efectos de la radiación , Preservación de la Fertilidad/métodos , Humanos , Recién Nacido , Neoplasias/patología , Neoplasias/fisiopatología , Ovario/efectos de los fármacos , Ovario/fisiología , Ovario/efectos de la radiación , Embarazo , Resultado del Embarazo/epidemiología , Traumatismos por Radiación/epidemiología , Traumatismos por Radiación/patología , Traumatismos por Radiación/fisiopatología , Radioterapia/efectos adversos , Enfermedades Uterinas/epidemiología , Enfermedades Uterinas/etiología , Enfermedades Uterinas/fisiopatología , Útero/efectos de los fármacos , Útero/efectos de la radiación
16.
Toxicol Sci ; 169(1): 43-53, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30657998

RESUMEN

With great advances in cancer detection and treatment, patient survival rates have improved substantially. Subsequently, significant efforts are now focused on improving the long-term sequelae of anticancer therapies in survivors, which includes fertility. Vincristine is a microtubule destabilizing antimitotic chemotherapeutic agent commonly administered for the treatment of cancers or autoimmune disorders prevalent in girls and women of reproductive age. The potential off-target effects of vincristine on the ovary have not been directly examined. Eight-week and 6-month-old C57BL/6J mice were administered with vincristine (1 mg/kg/bw/day) or saline on day (d)1, d4, and d8, then sacrificed after 24 hours (h), or 14 days (n = 4-6/group). We assessed the impact of vincristine on the ovarian reserve of quiescent primordial follicles, as well as growing follicles, which produce mature ovulatory oocytes. This study clearly demonstrated that multidose vincristine administration caused acute atresia and loss of growing follicles and reduced corpora luteua counts 24 h following final treatment. Treatment also disrupted estrous cycling and reduced serum anti-Müllerian hormone levels. However, primordial follicle numbers were unaffected, and growing follicle populations were restored to control levels 14 days after final treatment. Vincristine exerted similar effects on ovarian follicle populations in both 8-week-old reproductively young mice and reproductively older 6-month-old mice. This study suggests that vincristine, administrated at the current dose, is toxic to growing follicles but does not deplete primordial follicles in mice. Further studies should be performed before extrapolating these data to infer the consequences of vincristine on the ovary in humans.


Asunto(s)
Antineoplásicos Fitogénicos/toxicidad , Infertilidad Femenina/inducido químicamente , Folículo Ovárico/efectos de los fármacos , Reserva Ovárica/efectos de los fármacos , Vincristina/toxicidad , Factores de Edad , Animales , Hormona Antimülleriana/sangre , Ciclo Estral/efectos de los fármacos , Femenino , Infertilidad Femenina/patología , Infertilidad Femenina/fisiopatología , Ratones Endogámicos C57BL , Folículo Ovárico/patología , Medición de Riesgo , Factores de Tiempo
17.
Reproduction ; 156(4): 299-311, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30306601

RESUMEN

The ovarian reserve of primordial follicle oocytes is formed during in utero development and represents the entire supply of oocytes available to sustain female fertility. Maternal undernutrition during pregnancy and lactation diminishes offspring ovarian reserve in rats. In mice, maternal oocyte maturation is also susceptible to undernutrition, causing impaired offspring cardiovascular function. We aimed to determine whether programming of the ovarian reserve is impacted in offspring when maternal undernutrition extends from preconception oocyte development through to weaning. C57BL6/J female mice were fed normal protein (20%) or low-protein (8%) diet during preconception, pregnancy and lactation periods. Maternal ovaries were harvested at weaning and offspring ovaries were collected at postnatal day (PN)21 and 24 weeks of age. Total follicle estimates were obtained by histologically sampling one ovary per animal (n = 5/group). There was no impact of diet on maternal follicle numbers. However, in offspring, maternal protein restriction significantly depleted primordial follicles by 37% at PN21 and 51% at 24 weeks (P < 0.05). There were no effects of diet on other follicle classes. Histological analysis showed no differences in the proportion of proliferative follicles (pH3 positive), but increased atresia (cleaved caspase-3-positive, or TUNEL-positive) was detected in ovaries of protein-restricted offspring at both ages (P < 0.05). Our data show that maternal diet during the preconception period, in utero development and early life has significant impacts on follicle endowment and markers of follicle health later in life. This highlights the need for further investigation into the importance of maternal preconception diet for offspring reproductive development and health.


Asunto(s)
Dieta con Restricción de Proteínas , Reserva Ovárica , Ovario/citología , Efectos Tardíos de la Exposición Prenatal , Animales , Apoptosis , Daño del ADN , Femenino , Ratones Endogámicos C57BL , Embarazo , Distribución Aleatoria
18.
Sci Rep ; 8(1): 6516, 2018 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-29695822

RESUMEN

Dacarbazine is commonly administered for the treatment of cancers prevalent in reproductive age females. However, investigations of off-target effects of dacarbazine on the ovary are limited. We assessed the impact of dacarbazine on the ovarian reserve of primordial follicles, essential for fertility. Eight week and 6 month old C57BL/6 J mice were administered with dacarbazine or saline on day (d)0 and d7, then sacrificed after 12 hours (h), or 14d (n = 4-5/group). Follicle numbers, follicle density, serum AMH and corpora lutea were quantified and estrous cyclicity monitored. In reproductively young mice, dacarbazine did not affect primordial follicle numbers at 12 h, but resulted in a 36% reduction at 14d (p < 0.05). Dacarbazine-mediated primordial follicle depletion was accelerated with age, with a 24% (p < 0.05) and 36% (p < 0.01) reduction at 12 h and 14d. Follicle density remained unchanged between treatment groups at either age. Dacarbazine depleted antral follicles at 14d (p < 0.05), at both ages. Despite partial reduction of antral follicles, serum AMH, estrous cyclicity and corpora lutea (indicative of ovulation) remained unchanged between treatment groups, at both ages. Importantly, diminished ovarian reserve can result in premature ovarian insufficiency and infertility, thus, fertility preservation options should be considered for young female patients prior to dacarbazine treatment.


Asunto(s)
Cuerpo Lúteo/efectos de los fármacos , Dacarbazina/farmacología , Folículo Ovárico/efectos de los fármacos , Reserva Ovárica/efectos de los fármacos , Animales , Ciclo Estral/efectos de los fármacos , Femenino , Fertilidad/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ovulación/efectos de los fármacos , Insuficiencia Ovárica Primaria/tratamiento farmacológico , Reproducción/efectos de los fármacos
19.
Hum Reprod Update ; 24(2): 119-134, 2018 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-29377997

RESUMEN

BACKGROUND: Within the ovary, oocytes are stored in long-lived structures called primordial follicles, each comprising a meiotically arrested oocyte, surrounded by somatic granulosa cells. It is essential that their genetic integrity is maintained throughout life to ensure that high quality oocytes are available for ovulation. Of all the possible types of DNA damage, DNA double-strand breaks (DSBs) are considered to be the most severe. Recent studies have shown that DNA DSBs can accumulate in oocytes in primordial follicles during reproductive ageing, and are readily induced by exogenous factors such as γ-irradiation, chemotherapy and environmental toxicants. DSBs can induce oocyte death or, alternatively, activate a program of DNA repair in order to restore genetic integrity and promote survival. The repair of DSBs has been intensively studied in the context of meiotic recombination, and in recent years more detail is becoming available regarding the repair capabilities of primordial follicle oocytes. OBJECTIVE AND RATIONALE: This review discusses the induction and repair of DNA DSBs in primordial follicle oocytes. SEARCH METHODS: PubMed (Medline) and Google Scholar searches were performed using the key words: primordial follicle oocyte, DNA repair, double-strand break, DNA damage, chemotherapy, radiotherapy, ageing, environmental toxicant. The literature was restricted to papers in the English language and limited to reports in animals and humans dated from 1964 until 2017. The references within these articles were also manually searched. OUTCOMES: Recent experiments in animal models and humans have provided compelling evidence that primordial follicle oocytes can efficiently repair DNA DSBs arising from diverse origins, but this capacity may decline with increasing age. WIDER IMPLICATIONS: Primordial follicle oocytes are vulnerable to DNA DSBs emanating from endogenous and exogenous sources. The ability to repair this damage is essential for female fertility. In the long term, augmenting DNA repair in primordial follicle oocytes has implications for the development of novel fertility preservation agents for female cancer patients and for the management of maternal ageing. However, further work is required to fully characterize the specific proteins involved and to develop strategies to bolster their activity.

20.
Mol Cancer Ther ; 15(4): 720-30, 2016 04.
Artículo en Inglés | MEDLINE | ID: mdl-26846819

RESUMEN

Endometrial cancer contributes to significant morbidity and mortality in women with advanced stage or recurrent disease. IL11 is a cytokine that regulates cell cycle, invasion, and migration, all hallmarks of cancer. IL11 is elevated in endometrial tumors and uterine lavage fluid in women with endometrial cancer, and alters endometrial epithelial cancer cell adhesion and migration in vitro, but its role in endometrial tumorigenesis in vivo is unknown. We injected mice subcutaneously with human-derived Ishikawa or HEC1A endometrial epithelial cancer cells (ectopic), or HEC1A cells into the uterus (orthotopic) to develop endometrial cancer mouse models. Administration of anti-human IL11 receptor (R) α blocking antibody dramatically reduced HEC1A-derived tumor growth in both models and reduced peritoneal metastatic lesion spread in the orthotopic model, compared with IgG. Anti-human IL11Rα retained a well-differentiated, endometrial epithelial phenotype in the HEC1A ectopic mice, suggesting it prevented epithelial-to-mesenchymal transition. Blockade of mouse IL11Rα with anti-mouse IL11Rα antibody did not alter tumor growth, suggesting that cancer epithelial cell IL11 signaling is required for tumor progression. In vitro, anti-human IL11Rα antibody significantly reduced Ishikawa and HEC1A cell proliferation and invasion and promoted apoptosis. Anti-human, but not anti-mouse, IL11Rα antibody reduced STAT3, but not ERK, activation in HEC1A cells in vitro and in endometrial tumors in xenograft mice. We demonstrated that targeted blockade of endometrial cancer epithelial cell IL11 signaling reduced primary tumor growth and impaired metastasis in ectopic and orthotopic endometrial cancer models in vivo Our data suggest that therapeutically targeting IL11Rα could inhibit endometrial cancer growth and dissemination. Mol Cancer Ther; 15(4); 720-30. ©2016 AACR.


Asunto(s)
Neoplasias Endometriales/metabolismo , Neoplasias Endometriales/patología , Subunidad alfa del Receptor de Interleucina-11/metabolismo , Animales , Anticuerpos Monoclonales/farmacología , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Neoplasias Endometriales/tratamiento farmacológico , Femenino , Humanos , Interleucina-11/metabolismo , Interleucina-11/farmacología , Subunidad alfa del Receptor de Interleucina-11/antagonistas & inhibidores , Subunidad alfa del Receptor de Interleucina-11/genética , Interleucina-6/metabolismo , Ratones , Modelos Biológicos , Terapia Molecular Dirigida , Metástasis de la Neoplasia , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Carga Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA