Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cell Mol Life Sci ; 81(1): 227, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38775843

RESUMEN

Proteins delivered by endocytosis or autophagy to lysosomes are degraded by exo- and endoproteases. In humans 15 lysosomal cathepsins (CTS) act as important physiological regulators. The cysteine proteases CTSB and CTSL and the aspartic protease CTSD are the most abundant and functional important lysosomal proteinases. Whereas their general functions in proteolysis in the lysosome, their individual substrate, cleavage specificity, and their possible sequential action on substrate proteins have been previously studied, their functional redundancy is still poorly understood. To address a possible common role of highly expressed and functional important CTS proteases, we generated CTSB-, CTSD-, CTSL-, and CTSBDL-triple deficient (KO) human neuroblastoma-derived SH-SY5Y cells and CTSB-, CTSD-, CTSL-, CTSZ and CTSBDLZ-quadruple deficient (KO) HeLa cells. These cells with a combined cathepsin deficiency exhibited enlarged lysosomes and accumulated lipofuscin-like storage material. The lack of the three (SH-SY5Y) or four (HeLa) major CTSs caused an impaired autophagic flux and reduced degradation of endocytosed albumin. Proteome analyses of parental and CTS-depleted cells revealed an enrichment of cleaved peptides, lysosome/autophagy-associated proteins, and potentially endocytosed membrane proteins like the amyloid precursor protein (APP), which can be subject to endocytic degradation. Amino- and carboxyterminal APP fragments accumulated in the multiple CTS-deficient cells, suggesting that multiple CTS-mediated cleavage events regularly process APP. In summary, our analyses support the idea that different lysosomal cathepsins act in concert, have at least partially and functionally redundant substrates, regulate protein degradation in autophagy, and control cellular proteostasis, as exemplified by their involvement in the degradation of APP fragments.


Asunto(s)
Autofagia , Catepsinas , Lisosomas , Proteolisis , Humanos , Lisosomas/metabolismo , Catepsinas/metabolismo , Catepsinas/genética , Células HeLa , Endocitosis , Catepsina L/metabolismo , Catepsina L/genética , Línea Celular Tumoral , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética
2.
Genet Med ; 26(7): 101143, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38641995

RESUMEN

PURPOSE: Neurodevelopmental disorders exhibit clinical and genetic heterogeneity, ergo manifest dysfunction in components of diverse cellular pathways; the precise pathomechanism for the majority remains elusive. METHODS: We studied 5 affected individuals from 3 unrelated families manifesting global developmental delay, postnatal microcephaly, and hypotonia. We used exome sequencing and prioritized variants that were subsequently characterized using immunofluorescence, immunoblotting, pulldown assays, and RNA sequencing. RESULTS: We identified biallelic variants in ZFTRAF1, encoding a protein of yet unknown function. Four affected individuals from 2 unrelated families segregated 2 homozygous frameshift variants in ZFTRAF1, whereas, in the third family, an intronic splice site variant was detected. We investigated ZFTRAF1 at the cellular level and signified it as a nucleocytoplasmic protein in different human cell lines. ZFTRAF1 was completely absent in the fibroblasts of 2 affected individuals. We also identified 110 interacting proteins enriched in mRNA processing and autophagy-related pathways. Based on profiling of autophagy markers, patient-derived fibroblasts show irregularities in the protein degradation process. CONCLUSION: Thus, our findings suggest that biallelic variants of ZFTRAF1 cause a severe neurodevelopmental disorder.

3.
Cell ; 186(24): 5328-5346.e26, 2023 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-37883971

RESUMEN

Lysosomes serve dual antagonistic functions in cells by mediating anabolic growth signaling and the catabolic turnover of macromolecules. How these janus-faced activities are regulated in response to cellular nutrient status is poorly understood. We show here that lysosome morphology and function are reversibly controlled by a nutrient-regulated signaling lipid switch that triggers the conversion between peripheral motile mTOR complex 1 (mTORC1) signaling-active and static mTORC1-inactive degradative lysosomes clustered at the cell center. Starvation-triggered relocalization of phosphatidylinositol 4-phosphate (PI(4)P)-metabolizing enzymes reshapes the lysosomal surface proteome to facilitate lysosomal proteolysis and to repress mTORC1 signaling. Concomitantly, lysosomal phosphatidylinositol 3-phosphate (PI(3)P), which marks motile signaling-active lysosomes in the cell periphery, is erased. Interference with this PI(3)P/PI(4)P lipid switch module impairs the adaptive response of cells to altering nutrient supply. Our data unravel a key function for lysosomal phosphoinositide metabolism in rewiring organellar membrane dynamics in response to cellular nutrient status.


Asunto(s)
Lisosomas , Transducción de Señal , Lisosomas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Nutrientes , Fenómenos Fisiológicos Celulares
4.
Cell Mol Life Sci ; 80(9): 260, 2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37594553

RESUMEN

Oligodendrocytes are generated via a two-step mechanism from pluripotent neural stem cells (NSCs): after differentiation of NSCs to oligodendrocyte precursor/NG2 cells (OPCs), they further develop into mature oligodendrocytes. The first step of this differentiation process is only incompletely understood. In this study, we utilized the neurosphere assay to investigate NSC to OPC differentiation in a time course-dependent manner by mass spectrometry-based (phospho-) proteomics. We identify doublecortin-like kinase 1 (Dclk1) as one of the most prominently regulated proteins in both datasets, and show that it undergoes a gradual transition between its short/long isoform during NSC to OPC differentiation. This is regulated by phosphorylation of its SP-rich region, resulting in inhibition of proteolytic Dclk1 long cleavage, and therefore Dclk1 short generation. Through interactome analyses of different Dclk1 isoforms by proximity biotinylation, we characterize their individual putative interaction partners and substrates. All data are available via ProteomeXchange with identifier PXD040652.


Asunto(s)
Células-Madre Neurales , Células Precursoras de Oligodendrocitos , Diferenciación Celular , Quinasas Similares a Doblecortina , Oligodendroglía , Fosforilación , Proteínas Serina-Treonina Quinasas , Proteómica
5.
J Proteome Res ; 22(9): 3081-3095, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37585105

RESUMEN

In a currently 13-year-old girl of consanguineous Turkish parents, who developed unsteady gait and polyneuropathy at the ages of 3 and 6 years, respectively, we performed whole genome sequencing and identified a biallelic missense variant c.424C>T, p.R142W in glypican 1 (GPC1) as a putative disease-associated variant. Up to date, GPC1 has not been associated with a neuromuscular disorder, and we hypothesized that this variant, predicted as deleterious, may be causative for the disease. Using mass spectrometry-based proteomics, we investigated the interactome of GPC1 WT and the missense variant. We identified 198 proteins interacting with GPC1, of which 16 were altered for the missense variant. This included CANX as well as vacuolar ATPase (V-ATPase) and the mammalian target of rapamycin complex 1 (mTORC1) complex members, whose dysregulation could have a potential impact on disease severity in the patient. Importantly, these proteins are novel interaction partners of GPC1. At 10.5 years, the patient developed dilated cardiomyopathy and kyphoscoliosis, and Friedreich's ataxia (FRDA) was suspected. Given the unusually severe phenotype in a patient with FRDA carrying only 104 biallelic GAA repeat expansions in FXN, we currently speculate that disturbed GPC1 function may have exacerbated the disease phenotype. LC-MS/MS data are accessible in the ProteomeXchange Consortium (PXD040023).


Asunto(s)
Ataxia de Friedreich , Proteómica , Humanos , Ataxia , Cromatografía Liquida , Ataxia de Friedreich/genética , Ataxia de Friedreich/metabolismo , Glipicanos/metabolismo , Proteínas de Unión a Hierro/genética , Proteínas de Unión a Hierro/metabolismo , Espectrometría de Masas en Tándem , Femenino , Adolescente
6.
Expert Rev Proteomics ; 20(1-3): 47-55, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36919490

RESUMEN

INTRODUCTION: The lysosome is the main degradative organelle of almost all mammalian cells, fulfilling important functions in macromolecule recycling, metabolism, and signaling. Lysosomal dysfunction is connected to a continuously growing number of pathologic conditions, and lysosomal proteins present potential biomarkers for a variety of diseases. Therefore, there is an increasing interest in their analysis in patient samples. AREAS COVERED: We provide an overview of OMICs studies which identified lysosomal proteins as potential biomarkers for pathological conditions, covering proteomics, genomics, and transcriptomics approaches, identified through PubMed searches. With respect to discovery proteomics analyses, mainly lysosomal luminal and associated proteins were detected, while membrane proteins were found less frequently. Comprehensive coverage of the lysosomal proteome was only achieved by ultra-deep-coverage studies, but targeted approaches allowed for the reproducible quantification of lysosomal proteins in diverse sample types. EXPERT OPINION: The low abundance of lysosomal proteins complicates their reproducible analysis in patient samples. Whole proteome shotgun analyses fail in many instances to cover the lysosomal proteome, which is due to under-sampling and/or a lack of sensitivity. With the current state of the art, targeted proteomics assays provide the best performance for the characterization of lysosomal proteins in patient samples.


Asunto(s)
Lisosomas , Proteoma , Animales , Humanos , Proteoma/metabolismo , Lisosomas/genética , Orgánulos/metabolismo , Biomarcadores/metabolismo , Mamíferos/metabolismo
7.
Mol Cell Proteomics ; 22(3): 100509, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36791992

RESUMEN

Lysosomes, the main degradative organelles of mammalian cells, play a key role in the regulation of metabolism. It is becoming more and more apparent that they are highly active, diverse, and involved in a large variety of processes. The essential role of lysosomes is exemplified by the detrimental consequences of their malfunction, which can result in lysosomal storage disorders, neurodegenerative diseases, and cancer. Using lysosome enrichment and mass spectrometry, we investigated the lysosomal proteomes of HEK293, HeLa, HuH-7, SH-SY5Y, MEF, and NIH3T3 cells. We provide evidence on a large scale for cell type-specific differences of lysosomes, showing that levels of distinct lysosomal proteins are highly variable within one cell type, while expression of others is highly conserved across several cell lines. Using differentially stable isotope-labeled cells and bimodal distribution analysis, we furthermore identify a high confidence population of lysosomal proteins for each cell line. Multi-cell line correlation of these data reveals potential novel lysosomal proteins, and we confirm lysosomal localization for six candidates. All data are available via ProteomeXchange with identifier PXD020600.


Asunto(s)
Neuroblastoma , Proteoma , Ratones , Animales , Humanos , Proteoma/metabolismo , Células HEK293 , Células 3T3 NIH , Neuroblastoma/metabolismo , Lisosomas/metabolismo , Mamíferos/metabolismo
8.
Nat Commun ; 14(1): 39, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36596815

RESUMEN

The mitochondrial F1FO-ATP synthase produces the bulk of cellular ATP. The soluble F1 domain contains the catalytic head that is linked via the central stalk and the peripheral stalk to the membrane embedded rotor of the FO domain. The assembly of the F1 domain and its linkage to the peripheral stalk is poorly understood. Here we show a dual function of the mitochondrial Hsp70 (mtHsp70) in the formation of the ATP synthase. First, it cooperates with the assembly factors Atp11 and Atp12 to form the F1 domain of the ATP synthase. Second, the chaperone transfers Atp5 into the assembly line to link the catalytic head with the peripheral stalk. Inactivation of mtHsp70 leads to integration of assembly-defective Atp5 variants into the mature complex, reflecting a quality control function of the chaperone. Thus, mtHsp70 acts as an assembly and quality control factor in the biogenesis of the F1FO-ATP synthase.


Asunto(s)
Mitocondrias , ATPasas de Translocación de Protón Mitocondriales , ATPasas de Translocación de Protón Mitocondriales/genética , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Mitocondrias/metabolismo , Óxido Nítrico Sintasa , Adenosina Trifosfato
9.
Nat Cell Biol ; 25(1): 20-29, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36543979

RESUMEN

Impaired proinsulin-to-insulin processing in pancreatic ß-cells is a key defective step in both type 1 diabetes and type 2 diabetes (T2D) (refs. 1,2), but the mechanisms involved remain to be defined. Altered metabolism of sphingolipids (SLs) has been linked to development of obesity, type 1 diabetes and T2D (refs. 3-8); nonetheless, the role of specific SL species in ß-cell function and demise is unclear. Here we define the lipid signature of T2D-associated ß-cell failure, including an imbalance of specific very-long-chain SLs and long-chain SLs. ß-cell-specific ablation of CerS2, the enzyme necessary for generation of very-long-chain SLs, selectively reduces insulin content, impairs insulin secretion and disturbs systemic glucose tolerance in multiple complementary models. In contrast, ablation of long-chain-SL-synthesizing enzymes has no effect on insulin content. By quantitatively defining the SL-protein interactome, we reveal that CerS2 ablation affects SL binding to several endoplasmic reticulum-Golgi transport proteins, including Tmed2, which we define as an endogenous regulator of the essential proinsulin processing enzyme Pcsk1. Our study uncovers roles for specific SL subtypes and SL-binding proteins in ß-cell function and T2D-associated ß-cell failure.


Asunto(s)
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Humanos , Proinsulina/genética , Proinsulina/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Esfingolípidos/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Insulina/metabolismo , Homeostasis , Proteínas Portadoras/metabolismo , Glucosa/metabolismo , Células Secretoras de Insulina/metabolismo
10.
Biomedicines ; 10(10)2022 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-36289728

RESUMEN

Mass spectrometry-based proteomics aims to study the proteome both qualitatively and quantitatively. A key step in proteomic analysis is sample preparation, which is crucial for reliable results. We investigated the effect of the composition of the homogenization buffer used to extract proteins from brain tissue on the yield of protein extraction and the number and type of extracted proteins. Three different types of buffers were compared-detergent-based buffer (DB), chaotropic agent-based buffer (CAB) and buffer without detergent and chaotropic agent (DFB). Based on label-free quantitative protein analysis, detergent buffer was identified as the most suitable for global proteomic profiling of brain tissue. It allows the most efficient extraction of membrane proteins, synaptic and synaptic membrane proteins along with ribosomal, mitochondrial and myelin sheath proteins, which are of particular interest in the field of neurodegenerative disorders research.

11.
Nat Commun ; 13(1): 6212, 2022 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-36266287

RESUMEN

Lysosomes are well-established as the main cellular organelles for the degradation of macromolecules and emerging as regulatory centers of metabolism. They are of crucial importance for cellular homeostasis, which is exemplified by a plethora of disorders related to alterations in lysosomal function. In this context, protein complexes play a decisive role, regulating not only metabolic lysosomal processes but also lysosome biogenesis, transport, and interaction with other organelles. Using cross-linking mass spectrometry, we analyze lysosomes and early endosomes. Based on the identification of 5376 cross-links, we investigate protein-protein interactions and structures of lysosome- and endosome-related proteins. In particular, we present evidence for a tetrameric assembly of the lysosomal hydrolase PPT1 and a heterodimeric structure of FLOT1/FLOT2 at lysosomes and early endosomes. For FLOT1-/FLOT2-positive early endosomes, we identify >300 putative cargo proteins and confirm eleven substrates for flotillin-dependent endocytosis, including the latrophilin family of adhesion G protein-coupled receptors.


Asunto(s)
Endosomas , Lisosomas , Endosomas/metabolismo , Lisosomas/metabolismo , Proteínas de la Membrana/metabolismo , Hidrolasas/metabolismo
12.
Science ; 378(6615): eabn5648, 2022 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-36074821

RESUMEN

Lysosomes are key degradative compartments of the cell. Transport to lysosomes relies on GlcNAc-1-phosphotransferase-mediated tagging of soluble enzymes with mannose 6-phosphate (M6P). GlcNAc-1-phosphotransferase deficiency leads to the severe lysosomal storage disorder mucolipidosis II (MLII). Several viruses require lysosomal cathepsins to cleave structural proteins and thus depend on functional GlcNAc-1-phosphotransferase. We used genome-scale CRISPR screens to identify lysosomal enzyme trafficking factor (LYSET, also named TMEM251) as essential for infection by cathepsin-dependent viruses including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). LYSET deficiency resulted in global loss of M6P tagging and mislocalization of GlcNAc-1-phosphotransferase from the Golgi complex to lysosomes. Lyset knockout mice exhibited MLII-like phenotypes, and human pathogenic LYSET alleles failed to restore lysosomal sorting defects. Thus, LYSET is required for correct functioning of the M6P trafficking machinery and mutations in LYSET can explain the phenotype of the associated disorder.


Asunto(s)
COVID-19 , Lisosomas , Mucolipidosis , Proteínas , Animales , COVID-19/genética , Catepsinas/metabolismo , Humanos , Lisosomas/metabolismo , Manosa/metabolismo , Ratones , Ratones Noqueados , Mucolipidosis/genética , Mucolipidosis/metabolismo , Proteínas/genética , Transferasas (Grupos de Otros Fosfatos Sustitutos)
13.
Mol Neurobiol ; 59(7): 3969-3979, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35445918

RESUMEN

PNS and CNS myelin contain large amounts of galactocerebroside and sulfatide with 2-hydroxylated fatty acids. The underlying hydroxylation reaction is catalyzed by fatty acid 2-hydroxylase (FA2H). Deficiency in this enzyme causes a complicated hereditary spastic paraplegia, SPG35, which is associated with leukodystrophy. Mass spectrometry-based proteomics of purified myelin isolated from sciatic nerves of Fa2h-deficient (Fa2h-/-) mice revealed an increase in the concentration of the three proteins Cadm4, Mpp6 (Pals2), and protein band 4.1G (Epb41l2) in 17-month-old, but not in young (4 to 6-month-old), Fa2h-/- mice. These proteins are known to form a complex, together with the protein Lin7, in Schmidt-Lanterman incisures (SLIs). Accordingly, the number of SLIs was significantly increased in 17-month-old but not 4-month-old Fa2h-/- mice compared to age-matched wild-type mice. On the other hand, the relative increase in the SLI frequency was less pronounced than expected from Cadm4, Lin7, Mpp6 (Pals2), and band 4.1G (Epb41l2) protein levels. This suggests that the latter not only reflect the higher SLI frequency but that the concentration of the Cadm4 containing complex itself is increased in the SLIs or compact myelin of Fa2h-/- mice and may potentially play a role in the pathogenesis of the disease. The proteome data are available via ProteomeXchange with identifier PXD030244.


Asunto(s)
Amidohidrolasas , Moléculas de Adhesión Celular , Inmunoglobulinas , Vaina de Mielina , Paraplejía Espástica Hereditaria , Factores de Edad , Amidohidrolasas/deficiencia , Amidohidrolasas/metabolismo , Animales , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Modelos Animales de Enfermedad , Ácidos Grasos , Inmunoglobulinas/genética , Inmunoglobulinas/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Oxigenasas de Función Mixta , Vaina de Mielina/metabolismo , Vaina de Mielina/patología , Paraplejía/genética , Paraplejía/metabolismo , Paraplejía/patología , Células de Schwann/metabolismo , Células de Schwann/patología , Nervio Ciático/metabolismo , Nervio Ciático/patología , Paraplejía Espástica Hereditaria/genética , Paraplejía Espástica Hereditaria/metabolismo , Paraplejía Espástica Hereditaria/patología , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
15.
J Neurosci Res ; 99(11): 2774-2792, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34520578

RESUMEN

Myelination is crucial for the development and maintenance of axonal integrity, especially fast axonal action potential conduction. There is increasing evidence that glutamate signaling and release through neuronal activity modulates the myelination process. In this study, we examine the effect of manipulating glutamate signaling on myelination of oligodendrocyte (OL) lineage cells and their development in zebrafish (zf). We use the "intensity-based glutamate-sensing fluorescent reporter" (iGluSnFR) in the zf model (both sexes) to address the hypothesis that glutamate is implicated in regulation of myelinating OLs. Our results show that glial iGluSnFR expression significantly reduces OL lineage cell number and the expression of myelin markers in larvae (zfl) and adult brains. The specific glutamate receptor agonist, L-AP4, rescues this iGluSnFR effect by significantly increasing the expression of the myelin-related genes, plp1b and mbpa, and enhances myelination in L-AP4-injected zfl compared to controls. Furthermore, we demonstrate that degrading glutamate using Glutamat-Pyruvate Transaminase (GPT) or the blockade of glutamate reuptake by L-trans-pyrrolidine-2,4-dicarboxylate (PDC) significantly decreases myelin-related genes and drastically declines myelination in brain ventricle-injected zfl. Moreover, we found that myelin-specific ClaudinK (CldnK) and 36K protein expression is significantly decreased in iGluSnFR-expressing zfl and adult brains compared to controls. Taken together, this study confirms that glutamate signaling is directly required for the preservation of myelinating OLs and for the myelination process itself. These findings further suggest that glutamate signaling may provide novel targets to therapeutically boost remyelination in several demyelinating diseases of the CNS.


Asunto(s)
Oligodendroglía , Pez Cebra , Animales , Axones/metabolismo , Femenino , Glutamatos/metabolismo , Masculino , Vaina de Mielina/metabolismo , Oligodendroglía/metabolismo
16.
Mol Omics ; 17(6): 842-859, 2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-34477805

RESUMEN

Lysosomes are the main degradative organelles of almost all eukaryotic cells. They fulfil a crucial function in cellular homeostasis, and impairments in lysosomal function are connected to a continuously increasing number of pathological conditions. In recent years, lysosomes are furthermore emerging as control centers of cellular metabolism, and major regulators of cellular signaling were shown to be activated at the lysosomal surface. To date, >300 proteins were demonstrated to be located in/at the lysosome, and the lysosomal proteome and interactome is constantly growing. For the identification of these proteins, and their involvement in cellular mechanisms or disease progression, mass spectrometry (MS)-based proteomics has proven its worth in a large number of studies. In this review, we are recapitulating the application of MS-based approaches for the investigation of the lysosomal proteome, and their application to a diverse set of research questions. Numerous strategies were applied for the enrichment of lysosomes or lysosomal proteins and their identification by MS-based methods. This allowed for the characterization of the lysosomal proteome, the investigation of lysosome-related disorders, the utilization of lysosomal proteins as biomarkers for diseases, and the characterization of lysosome-related cellular mechanisms. While these >60 studies provide a comprehensive picture of the lysosomal proteome across several model organisms and pathological conditions, various proteomics approaches have not been applied to lysosomes yet, and a large number of questions are still left unanswered.


Asunto(s)
Lisosomas , Proteómica , Biomarcadores , Proteoma
17.
Proteomics ; 21(20): e2100129, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34453389

RESUMEN

The mass spectrometry-compatible surfactant RapiGest promotes the enzymatic digestion of proteins by facilitating their unfolding while retaining enzymatic activity. RapiGest consists of a hydrophilic head and a hydrophobic tail, which can be separated by acid hydrolysis. This allows for removal of RapiGest prior to mass spectrometric analysis via precipitation and solid phase extraction. During in-solution digestion experiments with RapiGest, we noticed a high variability in the formation of precipitates after acid hydrolysis, implying that RapiGest precipitation is sample-dependent. We show that RapiGest hydrolyses efficiently under acidic conditions and that differences in precipitation are solely due to protein/peptide concentration. Furthermore, we demonstrate that RapiGest precipitation can be triggered by the addition of intact proteins, providing a strategy for its efficient removal from highly diluted samples. Data are available via ProteomeXchange with identifier PXD025982.


Asunto(s)
Proteómica , Espectrometría de Masas en Tándem , Cromatografía Liquida , Péptidos , Tensoactivos
18.
Cells ; 10(8)2021 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-34440927

RESUMEN

Niemann-Pick type C disease (NPCD) is a lysosomal storage disorder caused by mutations in the NPC1 gene. The most affected tissues are the central nervous system and liver, and while significant efforts have been made to understand its neurological component, the pathophysiology of the liver damage remains unclear. In this study, hepatocytes derived from wild type and Npc1-/- mice were analyzed by mass spectrometry (MS)-based proteomics in conjunction with bioinformatic analysis. We identified 3832 proteins: 416 proteins had a p-value smaller than 0.05, of which 37% (n = 155) were considered differentially expressed proteins (DEPs), 149 of them were considered upregulated, and 6 were considered downregulated. We focused the analysis on pathways related to NPC pathogenic mechanisms, finding that the most significant changes in expression levels occur in proteins that function in the pathways of liver damage, lipid metabolism, and inflammation. Moreover, in the group of DEPs, 30% (n = 47) were identified as lysosomal proteins and 7% (n = 10) were identified as mitochondrial proteins. Importantly, we found that lysosomal DEPs, including CTSB/D/Z, LIPA, DPP7 and GLMP, and mitocondrial DEPs, AKR1B10, and VAT1 had been connected with liver fibrosis, damage, and steatosis in previous studies, validiting our dataset. Our study found potential therapeutic targets for the treatment of liver damage in NPCD.


Asunto(s)
Hepatocitos/metabolismo , Hígado/metabolismo , Enfermedad de Niemann-Pick Tipo C/metabolismo , Proteoma/metabolismo , Animales , Western Blotting , Células Cultivadas , Hígado/patología , Hepatopatías/metabolismo , Hepatopatías/patología , Masculino , Ratones
19.
Genet Med ; 23(12): 2369-2377, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34341521

RESUMEN

PURPOSE: Pathogenic variants in GNPTAB and GNPTG, encoding different subunits of GlcNAc-1-phosphotransferase, cause mucolipidosis (ML) II, MLIII alpha/beta, and MLIII gamma. This study aimed to investigate the cellular and molecular bases underlying skeletal abnormalities in patients with MLII and MLIII. METHODS: We analyzed bone biopsies from patients with MLIII alpha/beta or MLIII gamma by undecalcified histology and histomorphometry. The skeletal status of Gnptgko and Gnptab-deficient mice was determined and complemented by biochemical analysis of primary Gnptgko bone cells. The clinical relevance of the mouse data was underscored by systematic urinary collagen crosslinks quantification in patients with MLII, MLIII alpha/beta, and MLIII gamma. RESULTS: The analysis of iliac crest biopsies revealed that bone remodeling is impaired in patients with GNPTAB-associated MLIII alpha/beta but not with GNPTG-associated MLIII gamma. Opposed to Gnptab-deficient mice, skeletal remodeling is not affected in Gnptgko mice. Most importantly, patients with variants in GNPTAB but not in GNPTG exhibited increased bone resorption. CONCLUSION: The gene-specific impact on bone remodeling in human individuals and in mice proposes distinct molecular functions of the GlcNAc-1-phosphotransferase subunits in bone cells. We therefore appeal for the necessity to classify MLIII based on genetic in addition to clinical criteria to ensure appropriate therapy.


Asunto(s)
Resorción Ósea , Mucolipidosis , Transferasas (Grupos de Otros Fosfatos Sustitutos) , Animales , Humanos , Ratones , Mucolipidosis/genética , Mucolipidosis/patología , Transferasas (Grupos de Otros Fosfatos Sustitutos)/genética
20.
Anal Chem ; 93(8): 3762-3769, 2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33591729

RESUMEN

Chemical cross-linking has become a powerful tool for the analysis of protein structures and interactions by mass spectrometry. A particular strength of this approach is the ability to investigate native states in vivo, investigating intact organelles, cells, or tissues. For such applications, the cleavable cross-linkers disuccinimidyl sulfoxide (DSSO) and disuccinimidyl dibutyric urea (DSBU) are gaining increasing popularity, as they allow for the analysis of complex mixtures. It is inherently difficult to follow the reaction of cross-linkers with proteins in intact biological structures, stalling the optimization of in vivo cross-linking experiments. We generated polyclonal antibodies targeting DSSO- and DSBU-modified proteins, by injection of cross-linked bovine serum albumin (BSA) in rabbits. We show that the cross-linker-modified BSA successfully triggered an immune response, and that DSSO- and DSBU-specific antibodies were generated by the animals. Using affinity-purified antibodies specific for the individual cross-linkers, we demonstrate their application to the detection of cross-linker-modified proteins in Western blot and immunocytochemistry experiments of intact and permeabilized cells. Furthermore, we show their ability to immunoprecipitate DSSO/DSBU-modified proteins and provide evidence for their affinity toward water-quenched dead-links. These antibodies provide a valuable tool for the investigation of proteins modified with the cross-linkers DSSO and DSBU.


Asunto(s)
Albúmina Sérica Bovina , Sulfóxidos , Animales , Anticuerpos , Reactivos de Enlaces Cruzados , Espectrometría de Masas , Conejos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA