Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
eNeuro ; 11(8)2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39209542

RESUMEN

Uncovering the relationships between neural circuits, behavior, and neural dysfunction may require rodent pose tracking. While open-source toolkits such as DeepLabCut have revolutionized markerless pose estimation using deep neural networks, the training process still requires human intervention for annotating key points of interest in video data. To further reduce human labor for neural network training, we developed a method that automatically generates annotated image datasets of rodent paw placement in a laboratory setting. It uses invisible but fluorescent markers that become temporarily visible under UV light. Through stroboscopic alternating illumination, adjacent video frames taken at 720 Hz are either UV or white light illuminated. After color filtering the UV-exposed video frames, the UV markings are identified and the paw locations are deterministically mapped. This paw information is then transferred to automatically annotate paw positions in the next white light-exposed frame that is later used for training the neural network. We demonstrate the effectiveness of our method using a KineWheel-DeepLabCut setup for the markerless tracking of the four paws of a harness-fixed mouse running on top of the transparent wheel with mirror. Our automated approach, made available open-source, achieves high-quality position annotations and significantly reduces the need for human involvement in the neural network training process, paving the way for more efficient and streamlined rodent pose tracking in neuroscience research.


Asunto(s)
Redes Neurales de la Computación , Rayos Ultravioleta , Animales , Ratones , Grabación en Video/métodos , Iluminación/métodos , Conducta Animal/fisiología , Luz , Procesamiento de Imagen Asistido por Computador/métodos , Masculino , Aprendizaje Profundo
2.
Int J Mol Sci ; 25(9)2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38732220

RESUMEN

Serotonin is an essential neuromodulator for mental health and animals' socio-cognitive abilities. However, we previously found that a constitutive depletion of central serotonin did not impair rat cognitive abilities in stand-alone tests. Here, we investigated how a mild and acute decrease in brain serotonin would affect rats' cognitive abilities. Using a novel rat model of inducible serotonin depletion via the genetic knockdown of tryptophan hydroxylase 2 (TPH2), we achieved a 20% decrease in serotonin levels in the hypothalamus after three weeks of non-invasive oral doxycycline administration. Decision making, cognitive flexibility, and social recognition memory were tested in low-serotonin (Tph2-kd) and control rats. Our results showed that the Tph2-kd rats were more prone to choose disadvantageously in the long term (poor decision making) in the Rat Gambling Task and that only the low-serotonin poor decision makers were more sensitive to probabilistic discounting and had poorer social recognition memory than other low-serotonin and control individuals. Flexibility was unaffected by the acute brain serotonin reduction. Poor social recognition memory was the most central characteristic of the behavioral network of low-serotonin poor decision makers, suggesting a key role of social recognition in the expression of their profile. The acute decrease in brain serotonin appeared to specifically amplify the cognitive impairments of the subgroup of individuals also identified as poor decision makers in the population. This study highlights the great opportunity the Tph2-kd rat model offers to study inter-individual susceptibilities to develop cognitive impairment following mild variations of brain serotonin in otherwise healthy individuals. These transgenic and differential approaches together could be critical for the identification of translational markers and vulnerabilities in the development of mental disorders.


Asunto(s)
Toma de Decisiones , Serotonina , Triptófano Hidroxilasa , Animales , Ratas , Conducta Animal , Cognición , Técnicas de Silenciamiento del Gen , Hipotálamo/metabolismo , Serotonina/metabolismo , Conducta Social , Triptófano Hidroxilasa/metabolismo , Triptófano Hidroxilasa/genética
3.
Front Behav Neurosci ; 18: 1326501, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38549621

RESUMEN

Identifying factors that influence age-related cognitive decline is crucial, given its severe personal and societal impacts. However, studying aging in human or animal models is challenging due to the significant variability in aging processes among individuals. Additionally, longitudinal and cross-sectional studies often produce differing results. In this context, home-cage-based behavioral analysis over lifespans has emerged as a significant method in recent years. This study aimed to explore how prior experience affects cognitive performance in mice of various age groups (4, 12, and 22 months) using a home-cage-based touchscreen test battery. In this automated system, group-housed, ID-chipped mice primarily obtain their food during task performance throughout the day, motivated by their own initiative, without being subjected to food deprivation. Spatial working memory and attention were evaluated using the trial unique non-matching to location (TUNL) and the five-choice serial reaction time task (5-CSRTT), respectively. The same set of mice learned both of these demanding tasks. While signs of cognitive decline were already apparent in middle-aged mice, older mice exhibited poorer performance in both tasks. Mice at both 12 and 22 months displayed an increase in perseverance and a decrease in the percentage of correct responses in the TUNL test compared to the 4-month-old mice. Furthermore, during the 5-CSRTT, they exhibited higher rates of omissions and premature responses compared to their younger counterparts. Additionally, the correct response rate in 22-month-old mice was lower than that of the 4-month-old ones. However, mice that had undergone cognitive training at 4 months maintained high-performance levels when re-tested at 12 months, showing an increase in correct responses during TUNL testing compared to their untrained controls. In the 5-CSRTT, previously trained mice demonstrated higher correct response rates, fewer omissions, and reduced premature responses compared to naive control mice. Notably, even when assessed on a visual discrimination and behavioral flexibility task at 22 months, experienced mice outperformed naive 4-month-old mice. These findings highlight the advantages of early-life cognitive training and suggest that its benefits extend beyond the cognitive domains primarily targeted during early training. The success of this study was significantly aided by the fully automated home-cage-based testing system, which allows for high throughput with minimal human intervention.

4.
Anim Cogn ; 27(1): 24, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38451365

RESUMEN

We explored the behavioral flexibility of Commissaris's long-tongued bats through a spatial serial reversal foraging task. Bats kept in captivity for short periods were trained to obtain nectar rewards from two artificial flowers. At any given time, only one of the flowers provided rewards and these reward contingencies reversed in successive blocks of 50 flower visits. All bats detected and responded to reversals by making most of their visits to the currently active flower. As the bats experienced repeated reversals, their preference re-adjusted faster. Although the flower state reversals were theoretically predictable, we did not detect anticipatory behavior, that is, frequency of visits to the alternative flower did not increase within each block as the programmed reversal approached. The net balance of these changes was a progressive improvement in performance in terms of the total proportion of visits allocated to the active flower. The results are compatible with, but do not depend on, the bats displaying an ability to 'learn to learn' and show that the dynamics of allocation of effort between food sources can change flexibly according to circumstances.


Asunto(s)
Quirópteros , Néctar de las Plantas , Animales , Aprendizaje Inverso , Flores , Alimentos
5.
iScience ; 26(2): 105998, 2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36798444

RESUMEN

Central serotonin appears a promising transdiagnostic marker of psychiatric disorders and a modulator of some of their key behavioral symptoms. In adult male Tph2 -/- rats, constitutively lacking central serotonin, we tested individual's cognitive, social and non-social abilities and characterized group's social organization under classical and ethological testing conditions. Using unsupervised machine learning, we identified the functions most dependent on serotonin. Although serotonin depletion did not affect cognitive performances in classical testing, in the home-cage it induced compulsive aggression and sexual behavior, hyperactive and hypervigilant stereotyped behavior, reduced self-care and exacerbated corticosterone levels. This profile recalled symptoms of impulse control and anxiety disorders. Serotonin appeared essential for behavioral adaptation to dynamic social environments. Our animal model challenges the essential role of serotonin in decision-making, flexibility, impulsivity, and risk-taking. These findings highlight the importance of studying everyday life functions within the dynamic social living environment to model complexity in animal models.

6.
Elife ; 112022 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-36583654

RESUMEN

Single-board computers such as the Raspberry Pi make it easy to control hardware setups for laboratory experiments. GPIOs and expansion boards (HATs) give access to a whole range of sensor and control hardware. However, controlling such hardware can be challenging, when many experimental setups run in parallel and the time component is critical. LabNet is a C++ optimized control layer software to give access to the Raspberry Pi connected hardware over a simple network protocol. LabNet was developed to be suitable for time-critical operations, and to be simple to expand. It leverages the actor model to simplify multithreading programming and to increase modularity. The message protocol is implemented in Protobuf and offers performance, small message size, and supports a large number of programming languages on the client side. It shows good performance compared to locally executed tools like Bpod, pyControl, or Autopilot and reaches sub-millisecond range in network communication latencies. LabNet can monitor and react simultaneously to up to 14 pairs of digital inputs, without increasing latencies. LabNet itself does not provide support for the design of experimental tasks. This is left to the client. LabNet can be used for general automation in experimental laboratories with its control PC located at some distance. LabNet is open source and under continuing development.


Asunto(s)
Computadores , Programas Informáticos , Humanos , Lenguajes de Programación , Automatización , Laboratorios
7.
Neurobiol Dis ; 175: 105916, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36336243

RESUMEN

Personalized medicine intensifies interest in experimental paradigms that delineate sources of phenotypic variation. The paradigm of environmental enrichment allows for comparisons among differently housed laboratory rodents to unravel environmental effects on brain plasticity and related phenotypes. We have developed a new longitudinal variant of this paradigm, which allows to investigate the emergence of individuality, the divergence of individual behavioral trajectories under a constant genetic background and in a shared environment. We here describe this novel method, the "Individuality Paradigm," which allows to investigate mechanisms that drive individuality. Various aspects of individual activity are tracked over time to identify the contribution of the non-shared environment, that is the extent to which the experience of an environment differs between individual members of a population. We describe the design of this paradigm in detail, lay out its scientific potential beyond the published studies and discuss how it differs from other approaches to study individuality. The custom-built cage system, commercially marketed as "ColonyRack", allows mice to roam freely between 70 cages through connector tubes equipped with ring antennas that detect each animal's ID from an RFID transponder implanted in the animal's neck. The system has a total floor area of 2.74 m2 and its spatial resolution corresponds to the size of the individual cages. Spatiotemporally resolved antenna contacts yield longitudinal measures of individual behavior, including the powerful measure of roaming entropy (RE). The Individuality Paradigm provides a rodent model of the making of individuality and the impact of the 'non-shared' environment on life-course development.


Asunto(s)
Individualidad , Plasticidad Neuronal , Animales , Ratones
8.
Front Behav Neurosci ; 16: 1013624, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36248032

RESUMEN

The radial arm maze (RAM) is a common behavioral test to quantify spatial learning and memory in rodents. Prior attempts to refine the standard experimental setup have been insufficient. Previously, we demonstrated the feasibility of a fully automated, voluntary, and stress-free eight-arm RAM not requiring food or water deprivation. Here, we compared this newly developed refined RAM to a classic manual experimental setup using 24 female 10-12 weeks old C57BL/6J mice. We used a lipopolysaccharide (LPS)-induced model of systemic inflammation to examine long-term cognitive impairment for up to 13 weeks following LPS injection. Both mazes demonstrated robust spatial learning performance during the working memory paradigm. The refined RAM detected spatial learning and memory deficits among LPS-treated mice in the working memory paradigm, whereas the classic RAM detected spatial learning and memory deficits only in the combined working/reference memory paradigm. In addition, the refined RAM allowed for quantification of an animal's overall exploratory behavior and day/night activity pattern. While our study highlights important aspects of refinement of the new setup, our comparison of methods suggests that both RAMs have their respective merits depending on experimental requirements.

10.
Front Neurosci ; 15: 742652, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34899155

RESUMEN

Automated mouse phenotyping through the high-throughput analysis of home cage behavior has brought hope of a more effective and efficient method for testing rodent models of diseases. Advanced video analysis software is able to derive behavioral sequence data sets from multiple-day recordings. However, no dedicated mechanisms exist for sharing or analyzing these types of data. In this article, we present a free, open-source software actionable through a web browser (an R Shiny application), which performs an analysis of home cage behavioral sequence data, which is designed to spot differences in circadian activity while preventing p-hacking. The software aligns time-series data to the light/dark cycle, and then uses different time windows to produce up to 162 behavior variables per animal. A principal component analysis strategy detected differences between groups. The behavior activity is represented graphically for further explorative analysis. A machine-learning approach was implemented, but it proved ineffective at separating the experimental groups. The software requires spreadsheets that provide information about the experiment (i.e., metadata), thus promoting a data management strategy that leads to FAIR data production. This encourages the publication of some metadata even when the data are kept private. We tested our software by comparing the behavior of female mice in videos recorded twice at 3 and 7 months in a home cage monitoring system. This study demonstrated that combining data management with data analysis leads to a more efficient and effective research process.

11.
Front Behav Neurosci ; 15: 777767, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34955779

RESUMEN

Ceasing an ongoing motor response requires action cancelation. This is impaired in many pathologies such as attention deficit disorder and schizophrenia. Action cancelation is measured by the stop signal task that estimates how quickly a motor response can be stopped when it is already being executed. Apart from human studies, the stop signal task has been used to investigate neurobiological mechanisms of action cancelation overwhelmingly in rats and only rarely in mice, despite the need for a genetic model approach. Contributing factors to the limited number of mice studies may be the long and laborious training that is necessary and the requirement for a very loud (100 dB) stop signal. We overcame these limitations by employing a fully automated home-cage-based setup. We connected a home-cage to the operant box via a gating mechanism, that allowed individual ID chipped mice to start sessions voluntarily. Furthermore, we added a negative reinforcement consisting of a mild air puff with escape option to the protocol. This specifically improved baseline inhibition to 94% (from 84% with the conventional approach). To measure baseline inhibition the stop is signaled immediately with trial onset thus measuring action restraint rather than action cancelation ability. A high baseline allowed us to measure action cancelation ability with higher sensitivity. Furthermore, our setup allowed us to reduce the intensity of the acoustic stop signal from 100 to 70 dB. We constructed inhibition curves from stop trials with daily adjusted delays to estimate stop signal reaction times (SSRTs). SSRTs (median 88 ms) were lower than reported previously, which we attribute to the observed high baseline inhibition. Our automated training protocol reduced training time by 17% while also promoting minimal experimenter involvement. This sensitive and labor efficient stop signal task procedure should therefore facilitate the investigation of action cancelation pathologies in genetic mouse models.

12.
Nat Commun ; 12(1): 6045, 2021 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-34663792

RESUMEN

The retrosplenial cortex (RSC) has diverse functional inputs and is engaged by various sensory, spatial, and associative learning tasks. We examine how multiple functional aspects are integrated on the single-cell level in the RSC and how the encoding of task-related parameters changes across learning. Using a visuospatial context discrimination paradigm and two-photon calcium imaging in behaving mice, a large proportion of dysgranular RSC neurons was found to encode multiple task-related dimensions while forming context-value associations across learning. During reversal learning requiring increased cognitive flexibility, we revealed an increased proportion of multidimensional encoding neurons that showed higher decoding accuracy for behaviorally relevant context-value associations. Chemogenetic inactivation of RSC led to decreased behavioral context discrimination during learning phases in which context-value associations were formed, while recall of previously formed associations remained intact. RSC inactivation resulted in a persistent positive behavioral bias in valuing contexts, indicating a role for the RSC in context-value updating.


Asunto(s)
Condicionamiento Clásico/fisiología , Giro del Cíngulo/fisiología , Neuronas/fisiología , Animales , Conducta Animal/fisiología , Corteza Cerebral/fisiología , Aprendizaje/fisiología , Masculino , Recuerdo Mental , Ratones , Ratones Endogámicos C57BL
13.
Front Behav Neurosci ; 15: 684936, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34177482

RESUMEN

Rodent behavioral tasks are crucial to understanding the nature and underlying biology of cognition and cognitive deficits observed in psychiatric and neurological pathologies. Olfaction, as the primary sensory modality in rodents, is widely used to investigate cognition in rodents. In recent years, automation of olfactory tasks has made it possible to conduct olfactory experiments in a time- and labor-efficient manner while also minimizing experimenter-induced variability. In this study, we bring automation to the next level in two ways: First, by incorporating a radio frequency identification-based sorter that automatically isolates individuals for the experimental session. Thus, we can not only test animals during defined experimental sessions throughout the day but also prevent cagemate interference during task performance. Second, by implementing software that advances individuals to the next test stage as soon as performance criteria are reached. Thus, we can prevent overtraining, a known confounder especially in cognitive flexibility tasks. With this system in hand, we trained mice on a series of four odor pair discrimination tasks as well as their respective reversals. Due to performance-based advancement, mice normally advanced to the next stage in less than a day. Over the series of subsequent odor pair discriminations, the number of errors to criterion decreased significantly, thus indicating the formation of a learning set. As expected, errors to criterion were higher during reversals. Our results confirm that the system allows investigating higher-order cognitive functions such as learning set formation (which is understudied in mice) and reversal learning (which is a measure of cognitive flexibility and impaired in many clinical populations). Therefore, our system will facilitate investigations into the nature of cognition and cognitive deficits in pathological conditions by providing a high-throughput and labor-efficient experimental approach without the risks of overtraining or cagemate interference.

14.
Anim Cogn ; 24(5): 981-998, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33721139

RESUMEN

When choosing among multi-attribute options, integrating the full information may be computationally costly and time-consuming. So-called non-compensatory decision rules only rely on partial information, for example when a difference on a single attribute overrides all others. Such rules may be ecologically more advantageous, despite being economically suboptimal. Here, we present a study that investigates to what extent animals rely on integrative rules (using the full information) versus non-compensatory rules when choosing where to forage. Groups of mice were trained to obtain water from dispensers varying along two reward dimensions: volume and probability. The mice's choices over the course of the experiment suggested an initial reliance on integrative rules, later displaced by a sequential rule, in which volume was evaluated before probability. Our results also demonstrate that while the evaluation of probability differences may depend on the reward volumes, the evaluation of volume differences is seemingly unaffected by the reward probabilities.


Asunto(s)
Toma de Decisiones , Recompensa , Animales , Conducta de Elección , Ratones , Probabilidad
15.
Proc Natl Acad Sci U S A ; 118(2)2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33402532

RESUMEN

Pathogenic germline mutations in PIGV lead to glycosylphosphatidylinositol biosynthesis deficiency (GPIBD). Individuals with pathogenic biallelic mutations in genes of the glycosylphosphatidylinositol (GPI)-anchor pathway exhibit cognitive impairments, motor delay, and often epilepsy. Thus far, the pathophysiology underlying the disease remains unclear, and suitable rodent models that mirror all symptoms observed in human patients have not been available. Therefore, we used CRISPR-Cas9 to introduce the most prevalent hypomorphic missense mutation in European patients, Pigv:c.1022C > A (p.A341E), at a site that is conserved in mice. Mirroring the human pathology, mutant Pigv341E mice exhibited deficits in motor coordination, cognitive impairments, and alterations in sociability and sleep patterns, as well as increased seizure susceptibility. Furthermore, immunohistochemistry revealed reduced synaptophysin immunoreactivity in Pigv341E mice, and electrophysiology recordings showed decreased hippocampal synaptic transmission that could underlie impaired memory formation. In single-cell RNA sequencing, Pigv341E-hippocampal cells exhibited changes in gene expression, most prominently in a subtype of microglia and subicular neurons. A significant reduction in Abl1 transcript levels in several cell clusters suggested a link to the signaling pathway of GPI-anchored ephrins. We also observed elevated levels of Hdc transcripts, which might affect histamine metabolism with consequences for circadian rhythm. This mouse model will not only open the doors to further investigation into the pathophysiology of GPIBD, but will also deepen our understanding of the role of GPI-anchor-related pathways in brain development.


Asunto(s)
Glicosilfosfatidilinositoles/genética , Glicosilfosfatidilinositoles/metabolismo , Manosiltransferasas/metabolismo , Anomalías Múltiples/genética , Secuencia de Aminoácidos , Aminoácidos/genética , Animales , Sistemas CRISPR-Cas , Modelos Animales de Enfermedad , Epilepsia/genética , Glicosilfosfatidilinositoles/deficiencia , Hipocampo/metabolismo , Discapacidad Intelectual/genética , Manosiltransferasas/fisiología , Ratones , Ratones Endogámicos C57BL , Mutación , Mutación Missense , Fenotipo , Ingeniería de Proteínas/métodos , Convulsiones/genética , Convulsiones/fisiopatología
16.
Brain Behav Immun ; 91: 181-193, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33002631

RESUMEN

While the original protein Toll in Drosophila melanogaster regulates both host defense and morphogenesis, the role of its ortholog Toll-like receptors (TLRs), the interleukin 1 receptor (IL-1R) family, and the associated signaling pathways in mammalian brain development and structure is poorly understood. Because the adaptor protein myeloid differentiation primary response protein 88 (MyD88) is essential for downstream signaling of most TLRs and IL-1R, we systematically investigated the effect of MyD88 deficiency on murine brain structure during development and on behavior. In neonatal Myd88-/- mice, neocortical thickness was reduced, while density of cortical neurons was increased. In contrast, microglia, astrocyte, oligodendrocyte, and proliferating cell numbers were unchanged in these mice compared to wild-type mice. In adult Myd88-/- mice, neocortical thickness was unaltered, but neuronal density in neocortex and hippocampus was increased. Neuron arborization was less pronounced in adult Myd88-/- mice compared to wild-type animals. In addition, numbers of microglia and proliferating cells were increased in the neocortex and subventricular zone, respectively, with unaltered astrocyte and oligodendrocyte numbers, and myelinization was enhanced in the adult Myd88-/- neocortex. These morphologic changes in the brain of adult Myd88-/- mice were accompanied by specific behavioral traits, such as decreased locomotor activity, increased anxiety-like behavior, but normal day/light activity, satisfactory learning, short- and long-term spatial memory, potential cognitive inflexibility, and increased hanging and locomotor behavior within their home cage. Taken together, MyD88 deficiency results in morphologic and cellular changes in the mouse brain, as well as in altered natural and specific behaviors. Our data indicate a pathophysiological significance of MyD88 for mammalian CNS development, structure, and function.


Asunto(s)
Conducta Animal , Encéfalo/patología , Factor 88 de Diferenciación Mieloide , Proteínas Adaptadoras Transductoras de Señales , Animales , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Receptores de Interleucina-1/metabolismo
17.
Sci Adv ; 6(35): eabb1478, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32923634

RESUMEN

Individuals differ in their response to environmental stimuli, but the stability of individualized behaviors and their associated changes in brain plasticity are poorly understood. We developed a novel model of enriched environment to longitudinally monitor 40 inbred mice exploring 35 connected cages over periods of 3 to 6 months. We show that behavioral individuality that emerged during the first 3 months of environmental enrichment persisted when mice were withdrawn from the enriched environment for 3 additional months. Behavioral trajectories were associated with stable interindividual differences in adult hippocampal neurogenesis and persistent epigenetic effects on neuronal plasticity genes in the hippocampus. Using genome-wide DNA methylation sequencing, we show that one-third of the DNA methylation changes were maintained after withdrawal from the enriched environment. Our results suggest that, even under conditions that control genetic background and shared environment, early-life experiences result in lasting individualized changes in behavior, brain plasticity, and epigenetics.

18.
J Neurosci ; 40(14): 2943-2959, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32122952

RESUMEN

Piccolo, a presynaptic active zone protein, is best known for its role in the regulated assembly and function of vertebrate synapses. Genetic studies suggest a further link to several psychiatric disorders as well as Pontocerebellar Hypoplasia type 3 (PCH3). We have characterized recently generated Piccolo KO (Pclogt/gt ) rats. Analysis of rats of both sexes revealed a dramatic reduction in brain size compared with WT (Pclowt/wt ) animals, attributed to a decrease in the size of the cerebral cortical, cerebellar, and pontine regions. Analysis of the cerebellum and brainstem revealed a reduced granule cell layer and a reduction in size of pontine nuclei. Moreover, the maturation of mossy fiber afferents from pontine neurons and the expression of the α6 GABAA receptor subunit at the mossy fiber-granule cell synapse are perturbed, as well as the innervation of Purkinje cells by cerebellar climbing fibers. Ultrastructural and functional studies revealed a reduced size of mossy fiber boutons, with fewer synaptic vesicles and altered synaptic transmission. These data imply that Piccolo is required for the normal development, maturation, and function of neuronal networks formed between the brainstem and cerebellum. Consistently, behavioral studies demonstrated that adult Pclogt/gt rats display impaired motor coordination, despite adequate performance in tasks that reflect muscle strength and locomotion. Together, these data suggest that loss of Piccolo function in patients with PCH3 could be involved in many of the observed anatomical and behavioral symptoms, and that the further analysis of these animals could provide fundamental mechanistic insights into this devastating disorder.SIGNIFICANCE STATEMENT Pontocerebellar Hypoplasia Type 3 is a devastating developmental disorder associated with severe developmental delay, progressive microcephaly with brachycephaly, optic atrophy, seizures, and hypertonia with hyperreflexia. Recent genetic studies have identified non-sense mutations in the coding region of the PCLO gene, suggesting a functional link between this disorder and the presynaptic active zone. Our analysis of Piccolo KO rats supports this hypothesis, formally demonstrating that anatomical and behavioral phenotypes seen in patients with Pontocerebellar Hypoplasia Type 3 are also exhibited by these Piccolo deficient animals.


Asunto(s)
Cerebelo/metabolismo , Cerebelo/patología , Cerebelo/fisiopatología , Proteínas del Citoesqueleto/metabolismo , Neuropéptidos/metabolismo , Atrofias Olivopontocerebelosas , Animales , Modelos Animales de Enfermedad , Femenino , Técnicas de Inactivación de Genes , Masculino , Fenotipo , Ratas
19.
Lab Anim ; 54(1): 63-72, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31674858

RESUMEN

Voluntary wheel running (VWR) behaviour is a sensitive indicator of disturbed wellbeing and used for the assessment of individual experimental severity levels in laboratory mice. However, monitoring individual VWR performance usually requires single housing, which itself might have a negative effect on wellbeing. In consideration of the 3Rs principle, VWR behaviour was evaluated under group-housing conditions. To test the applicability for severity assessment, this readout was evaluated in a dextran sodium sulphate (DSS) induced colitis model. For continuous monitoring, an automated system with integrated radio-frequency identification technology was used, enabling detection of individual VWR. After a 14-day adaptation period mice demonstrated a stable running performance. Analysis during DSS treatment in combination with repeated facial vein phlebotomy and faecal sampling procedure resulted in significantly reduced VWR behaviour during the course of colitis and increased VWR during disease recovery. Mice submitted to phlebotomy and faecal sampling but no DSS treatment showed less reduced VWR but a longer-lasting recovery. Application of a cluster model discriminating individual severity levels based on VWR and body weight data revealed the highest severity level in most of the DSS-treated mice on day 7, but a considerable number of control mice also showed elevated severity levels due to sampling procedures alone. In summary, VWR sensitively indicated the course of DSS colitis severity and the impact of sample collection. Therefore, monitoring of VWR is a suitable method for the detection of disturbed wellbeing due to DSS colitis and sampling procedure in group-housed female laboratory mice.


Asunto(s)
Colitis/fisiopatología , Sulfato de Dextran/efectos adversos , Actividad Motora , Animales , Colitis/inducido químicamente , Modelos Animales de Enfermedad , Femenino , Vivienda para Animales , Ratones , Ratones Endogámicos C57BL , Estrés Psicológico
20.
Behav Brain Res ; 381: 112352, 2020 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-31722240

RESUMEN

The radial arm maze (RAM) is a common behavioral test to assess spatial working and reference memory in mice. However, conventional RAM experiments require a substantial degree of manual handling and animals are usually subjected to prolonged periods of food or water deprivation to achieve sufficient learning motivation resulting in stress-induced confounding effects and unwanted intra- and inter-subject variation. In a proof-of-concept approach to improve reliability and repeatability of results by refining the conventional maze methodology, we developed a voluntary, fully automated 8-arm RAM and tested its feasibility and usability using both spatial working and combined working/reference memory paradigms in ten female C57BL/6J mice. We demonstrate that experimental procedures of up to 7 days duration could be conducted without any manual animal handling and that mice up to 18 months of age showed robust spatial learning performance without any food or water restrictions being applied. Therefore, a voluntary, automated 8-arm RAM can serve to minimize variation in experimental results by reducing an animal's distress, suffering, and pain, which, in turn, contributes to the comprehensive application of 3R principles.


Asunto(s)
Aprendizaje por Laberinto/fisiología , Memoria a Corto Plazo/fisiología , Aprendizaje Espacial/fisiología , Memoria Espacial/fisiología , Alternativas al Uso de Animales , Animales , Automatización , Diseño de Equipo , Femenino , Ratones , Prueba de Estudio Conceptual , Reproducibilidad de los Resultados , Proyectos de Investigación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...