Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Small ; 20(35): e2310813, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38700050

RESUMEN

The structure of supraparticles (SPs) is a key parameter for achieving advanced functionalities arising from the combination of different nanoparticle (NP) types in one hierarchical entity. However, whenever a droplet-assisted forced assembly approach is used, e.g., spray-drying, the achievable structure is limited by the inherent drying phenomena of the method. In particular, mixed NP dispersions of differently sized colloids are heavily affected by segregation during the assembly. Herein, the influence of the colloidal arrangement of Pt and SiO2 NPs within a single supraparticulate entity is investigated. A salt-based electrostatic manipulation approach of the utilized NPs is proposed to customize the structure of spray-dried Pt/SiO2 SPs. By this, size-dependent separation phenomena of NPs during solvent evaporation, that limit the catalytic performance in the reduction of 4-nitrophenol, are overcome by achieving even Pt NP distribution. Additionally, the textural properties (pore size and distribution) of the SiO2 pore framework are altered to improve the mass transfer within the material leading to increased catalytic activity. The suggested strategy demonstrates a powerful, material-independent, and universally applicable approach to deliberately customize the structure and functionality of multi-component SP systems. This opens up new ways of colloidal material combinations and structural designs in droplet-assisted forced assembly approaches like spray-drying.

2.
Chem Commun (Camb) ; 60(45): 5840-5843, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38751319

RESUMEN

Dual-gasochromic supraparticles that undergo rapid eye-readable and gas-specific colour changes upon reaction with hydrogen or ammonia are reported. This functionality is achieved by tailoring the solid-liquid-gas interface within the mesoporous framework of supraparticles via spray-drying.

3.
ACS Appl Mater Interfaces ; 16(8): 11104-11115, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38358915

RESUMEN

Increased particulate matter (PM) concentrations in our ambient air are the cause of various life-threatening diseases and consequently need to be reduced to nonhazardous levels. The natural PM removal capabilities of leaves inspired the development of a low-cost coating technology that exploits natural weather phenomena for its PM catching and removal processes. The herein presented coating is based on microparticle-filled silicone with optimized chemical and physical surface properties. Its surface roughness was tuned using differently sized spray-dried particles, and its surface contact angle was adjusted through silicone tensides, polar ether groups incorporated in the silicon backbone, and the used amount of spray-dried particles. In such a way, optimized silicone coatings showed in laboratory experiments improved catching abilities (>300% relative to glass surfaces), a full retention of adsorbed PM during wind events, and the formation of large PM aggregates. Upon (simulated) rain events, these coatings were regenerated, and the content of harmful PM of various sizes dispersed in water was reduced between ∼73 and 100%. Furthermore, an outdoor test over 100 days showed the functioning of the coating under real-world conditions. These regenerative coatings are readily applicable on diverse surfaces and do not require any further technical infrastructure. Thus, they present an extension of the toolbox for PM reduction technologies.

4.
J Colloid Interface Sci ; 658: 199-208, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38100976

RESUMEN

The structure and texture of supraparticles determine their properties and performance, thus playing a critical role in research studies as well as industrial applications. The addition of salts is a well-known strategy to manipulate the colloidal stability of nanoparticles. In this study, this approach is used to tune the structure of spray-dried supraparticles. Three different salts (NaCl, CaCl2, and AlCl3) were added to binary silica (SiO2) nanoparticle dispersions (of 40 and 400 nm in size) to change their colloidal stability by lowering the electrostatic repulsion or enhancing the cation bridging. Dependent on the cation valence of the added salt and the nanoparticle size, the critical salt concentration, which yields nanoparticle agglomeration, is reached at different salt amounts. This phenomenon is exploited to tune the final structure of supraparticles - obtained by spray-drying binary dispersions - from core-shell to Janus-like to well-mixed structures. This consequently also tunes textural properties, like surface roughness and the pore system of the obtained supraparticles. Our results provide insights for controlling the structure of spray-dried supraparticles by manipulating the stability of binary nanoparticle dispersions, and they establish a framework for composite particle design.

5.
Adv Mater ; 35(47): e2306648, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37840431

RESUMEN

Spray-drying is a popular and well-known "drying tool" for engineers. This perspective highlights that, beyond this application, spray-drying is a very interesting and powerful tool for materials chemists to enable the design of multifunctional and hybrid materials. Upon spray-drying, the confined space of a liquid droplet is narrowed down, and its ingredients are forced together upon "falling dry." As  detailed in this article, this enables the following material formation strategies either individually or even in combination: nanoparticles and/or molecules can be assembled; precipitation reactions as well as chemical syntheses can be performed; and templated materials can be designed. Beyond this, fragile moieties can be processed, or "precursor materials" be prepared. Post-treatment of spray-dried objects eventually enables the next level in the design of complex materials. Using spray-drying to design (particulate) materials comes with many advantages-but also with many challenges-all of which are outlined here. It is believed that multifunctional, hybrid materials, made via spray-drying, enable very unique property combinations that are particularly highly promising in myriad applications-of which catalysis, diagnostics, purification, storage, and information are highlighted.

6.
Adv Mater ; 35(49): e2306728, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37786273

RESUMEN

Materials are the fundament of the physical world, whereas information and its exchange are the centerpieces of the digital world. Their fruitful synergy offers countless opportunities for realizing desired digital transformation processes in the physical world of materials. Yet, to date, a perfect connection between these worlds is missing. From the perspective, this can be achieved by overcoming the paradigm of considering materials as passive objects and turning them into perceptual, information-providing matter. This matter is capable of communicating associated digitally stored information, for example, its origin, fate, and material type as well as its intactness on demand. Herein, the concept of realizing perceptual, information-providing matter by integrating customizable (sub-)micrometer-sized communicating supraparticles (CSPs) is presented. They are assembled from individual nanoparticulate and/or (macro)molecular building blocks with spectrally differentiable signals that are either robust or stimuli-susceptible. Their combination yields functional signal characteristics that provide an identification signature and one or multiple stimuli-recorder features. This enables CSPs to communicate associated digital information on the tagged material and its encountered stimuli histories upon signal readout anywhere across its life cycle. Ultimately, CSPs link the materials and digital worlds with numerous use cases thereof, in particular fostering the transition into an age of sustainability.

7.
Mater Horiz ; 10(11): 4960-4967, 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37610262

RESUMEN

A novel GaPt-based supported catalytically active liquid metal solution (SCALMS) material is developed by exploiting the suprabead concept: Supraparticles, i.e. micrometer-sized particles composed of nanoparticles assembled by spray-drying, are bonded to millimeter-sized beads. The suprabeads combine macroscale size with catalytic properties of nanoscale GaPt particles entrapped in their silica framework.

8.
J Chem Phys ; 158(13): 134722, 2023 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-37031150

RESUMEN

The recent transition to H2-based energy storage demands reliable H2 sensors that allow for easy, fast, and reliable detection of leaks. Conventional H2 detectors are based on the changes of physical properties of H2 probes induced by subsurface H-atoms to a material such as electrical conductivity. Herein, we report on highly reactive gasochromic H2 detectors based on the adsorption of H2 on the material surface. We prepared supraparticles (SPs) containing different types of noble metal nanoparticles (NPs), silica NPs, and the dye resazurin by spray-drying and tested their performance for H2 detection. The material undergoes a distinct color change due to the hydrogenation of the purple resazurin to pink resorufin and, finally, colorless hydroresorufin. The stepwise transition is fast and visible to the naked eye. To further improve the performance of the sensor, we tested the reactivity of SPs with different catalytically active NPs by means of in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). We show that the choice of the NP catalyst has a pronounced effect on the response of the H2 indicator. In addition, we demonstrate that the performance depends on the size of the NPs. These effects are attributed to the availability of reactive H-atoms on the NP surface. Among the materials studied, Pt-containing SPs gave the best results for H2 detection.

9.
Chempluschem ; 88(2): e202200395, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36563109

RESUMEN

Luminomagnetic composites have been synthesized that allow for an individual tuning of luminescence intensity, chromaticity and magnetization by combination of superparamagnetic, citrate-stabilized iron oxide nanoparticles with the luminescent MOFs 3 ∞ [Ln2 (BDC)3 (H2 O)4 ] (Ln=Eu, Tb; BDC2- =terephthalate). The components are arranged to a concept of inverse structuring compared to previous luminomagnetic composites with MOF@magnetic particle (shell@core) composition so that the luminescent MOF now acts as core and is covered by magnetic nanoparticles forming the satellite shell. Thereby, the magnetic and photophysical properties are individually tuneable between high emission intensity (1.2 ⋅ 106  cps mg-1 ) plus low saturation magnetization (6 emu g-1 ) and the direct opposite (0.09 ⋅ 106  cps mg-1 ; 42 emu g-1 ) by adjusting the particle coverage of the MOF. This is not achievable with a core-shell structure having a magnetic core and a dense MOF shell. The composition of the composites and the influence of different synthesis conditions on their properties were investigated by SEM/EDX, PXRD, magnetization measurements and photoluminescence spectroscopy.

10.
Small ; 18(48): e2203068, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36253136

RESUMEN

Optical microscale shear-stress indicator particles are of interest for the in situ recording of localized forces, e.g., during 3D printing or smart skins in robotic applications. Recently developed particle systems are based on optical responses enabled by integrated organic dyes. They thus suffer from potential chemical instability and cross-sensitivities toward humidity or temperature. These drawbacks can be circumvented using photonic balls as shear-stress indicator particles, which employ structural color as the element to record forces. Here, such photonic balls are prepared from silica and iron oxide nanoparticles via the scalable and fast spray-drying technique. Process parameters to create photonic balls with a disordered core and an ordered particle structure toward the exterior of the supraparticles are reported. This hybrid disordered-ordered structure is responsible for a color loss of the indicator particles during shear-stress application because of irreversible structural destruction. By adjusting the primary silica particle sizes, nearly all colors of the visible spectrum can be achieved and the sensitivity of the response to shear stress can be adjusted.


Asunto(s)
Fotones , Dióxido de Silicio , Dióxido de Silicio/química , Tamaño de la Partícula
11.
Adv Mater ; 34(31): e2202683, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35596261

RESUMEN

Small-sized temperature indicator additives autonomously record temperature events via a gradual irreversible signal change. This permits, for instance, the indication of possible cold-chain breaches or failure of electronics but also curing of glues. Thus, information about the materials' thermal history can be obtained upon signal detection at every point of interest. In this work, maximum-temperature indicators with magnetic readout based on micrometer-sized supraparticles (SPs) are introduced. The magnetic signal transduction is, by nature, independent of the materials' optical properties. This facilitates the determination of valuable temperature information from the inside, that is, the bulk, even of dark and opaque macroscopic objects, which might differ from their surface. Compared to state-of-the-art optical temperature indicators, complementary magnetic readout characteristics ultimately expand their applicability. The conceptualized SPs are hierarchically structured assemblies of environmentally friendly, inexpensive iron oxide nanoparticles and thermoplastic polymer. Irreversible structural changes, induced by polymer softening, yield magnetic interaction changes within and between the hierarchic sub-structures, which are distinguishable and define the temperature indication mechanism. The fundamental understanding of the SPs' working principle enables customization of the particles' working range, response time, and sensitivity, using a toolbox-like manufacturing approach. The magnetic signal change is detected self-referenced, fast, and contactless.

12.
Nano Lett ; 22(7): 2762-2768, 2022 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-35311292

RESUMEN

Identifying and ensuring the integrity of products plays an important role in today's globalized world. Miniaturized information taggants in the packaging surface are therefore required to monitor the product itself instead of applying external labels. Ideally, multiple types of information are stored in such additives. In this work, micrometer-sized core-shell particles (supraparticles) were developed to provide material surfaces with both an identifier and a surface abrasion indication functionality. The core of the supraparticles contains iron oxide nanoparticles that allow identification of the surface with a spectral magnetic code resolved by magnetic particle spectroscopy. The fluorescent silica nanoparticles in the supraparticle shell can be abraded by mechanical stress and resolved by fluorescence spectroscopy. This provides information about the mechanical integrity of the system. The application as surfaces, that contain several types of information in one supraparticle, was demonstrated here by incorporating such bifunctional supraparticles as additives in a surface coating.


Asunto(s)
Nanopartículas , Dióxido de Silicio , Magnetismo , Nanopartículas/química , Fenómenos Físicos , Dióxido de Silicio/química , Propiedades de Superficie
13.
Small ; 18(15): e2107513, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35253355

RESUMEN

Small scratches and abrasion cause damage to packaging coatings. Albeit often invisible to the human eye, such small defects in the coating may ultimately have a strong negative impact on the whole system. For instance, gases may penetrate the coating and consequently the package barrier, thus leading to the degradation of sensitive goods. Herein, the indicators of mechanical damage in the form of particles are reported, which can readily be integrated into coatings. Shear stress-induced damage is indicated by the particles via a color change. The particles are designed as core-shell supraparticles. The supraparticle core is based on rhodamine B dye-doped silica nanoparticles, whereas the shell is made of alumina nanoparticles. The alumina surface is functionalized with a monolayer of a perylene dye. The resulting core-shell supraparticle system thus contains two colors, one in the core and one in the shell part of the architecture. Mechanical damage of this structure exposes the core from the shell, resulting in a color change. With particles integrated into a coating lacquer, mechanical damage of a coating can be monitored via a color change and even be related to the degree of oxygen penetration in a damaged coating.


Asunto(s)
Nanopartículas , Dióxido de Silicio , Óxido de Aluminio , Humanos , Nanopartículas/química , Dióxido de Silicio/química
14.
Small ; 17(28): e2101588, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34085395

RESUMEN

Communicating objects are demanded for product security and the concepts of a circular economy or the Internet of Nano Things. Smart additives in the form of particles can be the key to equip objects with the desired materials intelligence as their miniaturized size improves applicability and security. Beyond their proposed identification by optical signals, magnetic signals deriving from magnetic particles can hypothetically be used for identification but are to date only resolved roughly. Herein, a magnetic particle-based toolbox is reported, that provides more than 77 billion (77 × 109 ) different magnetic codes, adjustable in one single particle, that can be read out unambiguously, easily, and quickly. The key towards achieving the vast code variety is a hierarchical supraparticle design that is inspired by music: similarly to how the line-up variation of a musical ensemble yields distinguishable overtones, the variation of the supraparticle composition alters their magnetic overtones. By minimizing magnetic interactions, customizable signals are spectrally decoded by the simple method of magnetic particle spectroscopy. A large number of chemically adjustable magnetic codes and the possibility of their remote, contactless detection from within materials is a breakthrough for unexploited labeling applications and pave the way towards materials intelligence.


Asunto(s)
Fenómenos Magnéticos , Magnetismo , Fenómenos Físicos
15.
Nanoscale Adv ; 3(10): 2822-2829, 2021 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-36134194

RESUMEN

The controlled agglomeration of superparamagnetic iron oxide nanoparticles (SPIONs) was used to rapidly switch their magnetic properties. Small-angle X-ray scattering (SAXS) and dynamic light scattering showed that tailored iron oxide nanoparticles with phase-changing organic ligand shells agglomerate at temperatures between 5 °C and 20 °C. We observed the concurrent change in magnetic properties using magnetic particle spectroscopy (MPS) with a temporal resolution on the order of seconds and found reversible switching of magnetic properties of SPIONs by changing their agglomeration state. The non-linear correlation between magnetization amplitude from MPS and agglomeration degree from SAXS data indicated that the agglomerates' size distribution affected magnetic properties.

16.
Nanoscale Adv ; 1(4): 1510-1515, 2019 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-36132599

RESUMEN

Superparamagnetic iron oxide nanoparticles can be assembled to form anisotropic microrod supraparticles with the assistance of a magnetic field during synthesis. Optionally, these iron oxide microrods can furthermore be coated with a thin silica shell. Due to their anisotropic structure, both microrod types can be aligned in a magnetic field while being dispersed in a matrix material which can be cured during the alignment of the microrods. In this way, an anisotropic magnetic composite is obtained. Interestingly, it was observed that the optical extinction properties for visible light in such a composite are direction dependent, which can be explained by using appropriate models based on Maxwell equations. Based on the understanding of this principle, a clever approach for a hidden code could be proposed which is obtained from mixing pure iron oxide and silica coated microrod supraparticles in such an anisotropic composite. The hidden code, which comes down to obtaining a single value eventually, can only be revealed when knowing that the system needs to be measured with a certain "twist".

17.
Nanoscale Adv ; 1(11): 4277-4281, 2019 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-36134422

RESUMEN

Calcination of nanoparticles is always accompanied by undesired sintering. A calcination route preventing hard-agglomeration to bulk lumps, which is transferable to almost any kind of metal oxide nanoparticle, is developed by surrounding targeted nanoparticles by silica nanoparticles within a nanostructured microparticle. After calcination, the desired nanoparticles are regained as a monodisperse sol via silica dissolution.

18.
ACS Nano ; 12(6): 5093-5120, 2018 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-29763295

RESUMEN

Under the right process conditions, nanoparticles can cluster together to form defined, dispersed structures, which can be termed supraparticles. Controlling the size, shape, and morphology of such entities is a central step in various fields of science and technology, ranging from colloid chemistry and soft matter physics to powder technology and pharmaceutical and food sciences. These diverse scientific communities have been investigating formation processes and structure/property relations of such supraparticles under completely different boundary conditions. On the fundamental side, the field is driven by the desire to gain maximum control of the assembly structures using very defined and tailored colloidal building blocks, whereas more applied disciplines focus on optimizing the functional properties from rather ill-defined starting materials. With this review article, we aim to provide a connecting perspective by outlining fundamental principles that govern the formation and functionality of supraparticles. We discuss the formation of supraparticles as a result of colloidal properties interplaying with external process parameters. We then outline how the structure of the supraparticles gives rise to diverse functional properties. They can be a result of the structure itself (emergent properties), of the colocalization of different, functional building blocks, or of coupling between individual particles in close proximity. Taken together, we aim to establish structure-property and process-structure relationships that provide unifying guidelines for the rational design of functional supraparticles with optimized properties. Finally, we aspire to connect the different disciplines by providing a categorized overview of the existing, diverging nomenclature of seemingly similar supraparticle structures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...