Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Gen Virol ; 105(4)2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38572740

RESUMEN

The herpes simplex virus 1 (HSV1) virion host shutoff (vhs) protein is an endoribonuclease that regulates the translational environment of the infected cell, by inducing the degradation of host mRNA via cellular exonuclease activity. To further understand the relationship between translational shutoff and mRNA decay, we have used ectopic expression to compare HSV1 vhs (vhsH) to its homologues from four other alphaherpesviruses - varicella zoster virus (vhsV), bovine herpesvirus 1 (vhsB), equine herpesvirus 1 (vhsE) and Marek's disease virus (vhsM). Only vhsH, vhsB and vhsE induced degradation of a reporter luciferase mRNA, with poly(A)+ in situ hybridization indicating a global depletion of cytoplasmic poly(A)+ RNA and a concomitant increase in nuclear poly(A)+ RNA and the polyA tail binding protein PABPC1 in cells expressing these variants. By contrast, vhsV and vhsM failed to induce reporter mRNA decay and poly(A)+ depletion, but rather, induced cytoplasmic G3BP1 and poly(A)+ mRNA- containing granules and phosphorylation of the stress response proteins eIF2α and protein kinase R. Intriguingly, regardless of their apparent endoribonuclease activity, all vhs homologues induced an equivalent general blockade to translation as measured by single-cell puromycin incorporation. Taken together, these data suggest that the activities of translational arrest and mRNA decay induced by vhs are separable and we propose that they represent sequential steps of the vhs host interaction pathway.


Asunto(s)
Herpesvirus Humano 1 , Proteínas Virales , Proteínas Virales/genética , Proteínas Virales/metabolismo , Ribonucleasas , ADN Helicasas , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , ARN Helicasas , Proteínas con Motivos de Reconocimiento de ARN/metabolismo , Herpesvirus Humano 1/genética , Endorribonucleasas/metabolismo , Estabilidad del ARN , Virión/genética , Virión/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
2.
PLoS Pathog ; 19(6): e1010966, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37343008

RESUMEN

Herpes simplex virus 1 (HSV1) expresses its genes in a classical cascade culminating in the production of large amounts of structural proteins to facilitate virus assembly. HSV1 lacking the virus protein VP22 (Δ22) exhibits late translational shutoff, a phenotype that has been attributed to the unrestrained activity of the virion host shutoff (vhs) protein, a virus-encoded endoribonuclease which induces mRNA degradation during infection. We have previously shown that vhs is also involved in regulating the nuclear-cytoplasmic compartmentalisation of the virus transcriptome, and in the absence of VP22 a number of virus transcripts are sequestered in the nucleus late in infection. Here we show that despite expressing minimal amounts of structural proteins and failing to plaque on human fibroblasts, the strain 17 Δ22 virus replicates and spreads as efficiently as Wt virus, but without causing cytopathic effect (CPE). Nonetheless, CPE-causing virus spontaneously appeared on Δ22-infected human fibroblasts, and four viruses isolated in this way had all acquired point mutations in vhs which rescued late protein translation. However, unlike a virus deleted for vhs, these viruses still induced the degradation of both cellular and viral mRNA suggesting that vhs mutation in the absence of VP22 is necessary to overcome a more complex disturbance in mRNA metabolism than mRNA degradation alone. The ultimate outcome of secondary mutations in vhs is therefore the rescue of virus-induced CPE caused by late protein synthesis, and while there is a clear selective pressure on HSV1 to mutate vhs for optimal production of late structural proteins, the purpose of this is over and above that of virus production.


Asunto(s)
Herpes Simple , Herpesvirus Humano 1 , Humanos , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/metabolismo , Transcriptoma , Ribonucleasas/metabolismo , Virión/metabolismo , ARN Mensajero/genética , Herpes Simple/genética , Herpes Simple/metabolismo
3.
J Virol ; 96(14): e0192621, 2022 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-35758691

RESUMEN

Virion host shutoff (vhs) protein is an endoribonuclease encoded by herpes simplex virus 1 (HSV1). vhs causes several changes to the infected cell environment that favor the translation of late (L) virus proteins: cellular mRNAs are degraded, immediate early (IE) and early (E) viral transcripts are sequestered in the nucleus with polyA binding protein (PABPC1), and dsRNA is degraded to help dampen the PKR-dependent stress response. To further our understanding of the cell biology of vhs, we constructed a virus expressing vhs tagged at its C terminus with GFP. When first expressed, vhs-GFP localized to juxtanuclear clusters, and later it colocalized and interacted with its binding partner VP16, and was packaged into virions. Despite vhs-GFP maintaining activity when expressed in isolation, it failed to degrade mRNA or relocalise PABPC1 during infection, while viral transcript levels were similar to those seen for a vhs knockout virus. PKR phosphorylation was also enhanced in vhs-GFP infected cells, which is in line with a failure to degrade dsRNA. Nonetheless, mRNA FISH revealed that as in Wt but not Dvhs infection, IE and E, but not L transcripts were retained in the nucleus of vhs-GFP infected cells at late times. These results revealed that the vhs-induced nuclear retention of IE and E transcripts was dependent on vhs expression but not on its endoribonuclease activity, uncoupling these two functions of vhs. IMPORTANCE Like many viruses, herpes simplex virus 1 (HSV1) expresses an endoribonuclease, the virion host shutoff (vhs) protein, which regulates the RNA environment of the infected cell and facilitates the classical cascade of virus protein translation. It does this by causing the degradation of some mRNA molecules and the nuclear retention of others. Here, we describe a virus expressing vhs tagged at its C terminus with a green fluorescent protein (GFP) and show that the vhs-GFP fusion protein retains the physical properties of native vhs but does not induce the degradation of mRNA. Nonetheless, vhs-GFP maintains the ability to trap the early virus transcriptome in the nucleus to favor late protein translation, proving for the first time that mRNA degradation is not a prerequisite for vhs effects on the nuclear transcriptome. This virus, therefore, has uncoupled the nuclear retention and degradation activities of vhs, providing a new understanding of vhs during infection.


Asunto(s)
Herpes Simple , Herpesvirus Humano 1 , Estabilidad del ARN , Ribonucleasas , Proteínas Virales , Núcleo Celular/metabolismo , Núcleo Celular/virología , Proteínas Fluorescentes Verdes/genética , Herpes Simple/metabolismo , Herpes Simple/virología , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/metabolismo , Humanos , Estabilidad del ARN/genética , ARN Bicatenario/metabolismo , ARN Mensajero/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Ribonucleasas/genética , Ribonucleasas/metabolismo , Transcriptoma , Proteínas Virales/genética , Proteínas Virales/metabolismo , Virión/metabolismo
4.
J Mol Diagn ; 24(4): 320-336, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35121140

RESUMEN

Previous studies have described reverse-transcription loop-mediated isothermal amplification (RT-LAMP) for the rapid detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in nasopharyngeal/oropharyngeal swab and saliva samples. This multisite clinical evaluation describes the validation of an improved sample preparation method for extraction-free RT-LAMP and reports clinical performance of four RT-LAMP assay formats for SARS-CoV-2 detection. Direct RT-LAMP was performed on 559 swabs and 86,760 saliva samples and RNA RT-LAMP on extracted RNA from 12,619 swabs and 12,521 saliva samples from asymptomatic and symptomatic individuals across health care and community settings. For direct RT-LAMP, overall diagnostic sensitivity (DSe) was 70.35% (95% CI, 63.48%-76.60%) on swabs and 84.62% (95% CI, 79.50%-88.88%) on saliva, with diagnostic specificity of 100% (95% CI, 98.98%-100.00%) on swabs and 100% (95% CI, 99.72%-100.00%) on saliva, compared with quantitative RT-PCR (RT-qPCR); analyzing samples with RT-qPCR ORF1ab CT values of ≤25 and ≤33, DSe values were 100% (95% CI, 96.34%-100%) and 77.78% (95% CI, 70.99%-83.62%) for swabs, and 99.01% (95% CI, 94.61%-99.97%) and 87.61% (95% CI, 82.69%-91.54%) for saliva, respectively. For RNA RT-LAMP, overall DSe and diagnostic specificity were 96.06% (95% CI, 92.88%-98.12%) and 99.99% (95% CI, 99.95%-100%) for swabs, and 80.65% (95% CI, 73.54%-86.54%) and 99.99% (95% CI, 99.95%-100%) for saliva, respectively. These findings demonstrate that RT-LAMP is applicable to a variety of use cases, including frequent, interval-based direct RT-LAMP of saliva from asymptomatic individuals who may otherwise be missed using symptomatic testing alone.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Prueba de COVID-19 , Humanos , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos , ARN Viral/análisis , ARN Viral/genética , SARS-CoV-2/genética , Saliva , Sensibilidad y Especificidad
5.
Clin Microbiol Infect ; 27(9): 1348.e1-1348.e7, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33901668

RESUMEN

OBJECTIVES: Rapid, high throughput diagnostics are a valuable tool, allowing the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in populations so as to identify and isolate people with asymptomatic and symptomatic infections. Reagent shortages and restricted access to high throughput testing solutions have limited the effectiveness of conventional assays such as quantitative RT-PCR (RT-qPCR), particularly throughout the first months of the coronavirus disease 2019 pandemic. We investigated the use of LamPORE, where loop-mediated isothermal amplification (LAMP) is coupled to nanopore sequencing technology, for the detection of SARS-CoV-2 in symptomatic and asymptomatic populations. METHODS: In an asymptomatic prospective cohort, for 3 weeks in September 2020, health-care workers across four sites (Birmingham, Southampton, Basingstoke and Manchester) self-swabbed with nasopharyngeal swabs weekly and supplied a saliva specimen daily. These samples were tested for SARS-CoV-2 RNA using the Oxford Nanopore LamPORE system and a reference RT-qPCR assay on extracted sample RNA. A second retrospective cohort of 848 patients with influenza-like illness from March 2020 to June 2020 were similarly tested from nasopharyngeal swabs. RESULTS: In the asymptomatic cohort a total of 1200 participants supplied 23 427 samples (3966 swab, 19 461 saliva) over a 3-week period. The incidence of SARS-CoV-2 detection using LamPORE was 0.95%. Diagnostic sensitivity and specificity of LamPORE was >99.5% (decreasing to approximately 98% when clustered estimation was used) in both swab and saliva asymptomatic samples when compared with the reference RT-qPCR test. In the retrospective symptomatic cohort, the incidence was 13.4% and the sensitivity and specificity were 100%. CONCLUSIONS: LamPORE is a highly accurate methodology for the detection of SARS-CoV-2 in both symptomatic and asymptomatic population settings and can be used as an alternative to RT-qPCR.


Asunto(s)
COVID-19/diagnóstico , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos , Pandemias , SARS-CoV-2/aislamiento & purificación , COVID-19/virología , Estudios de Cohortes , Proteínas de la Nucleocápside de Coronavirus/genética , Humanos , Límite de Detección , Secuenciación de Nanoporos , Nasofaringe/virología , Poliproteínas/genética , Estudios Prospectivos , Reproducibilidad de los Resultados , Estudios Retrospectivos , SARS-CoV-2/genética , Saliva/virología , Sensibilidad y Especificidad , Proteínas Virales/genética
6.
Science ; 372(6539)2021 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-33688063

RESUMEN

Extensive global sampling and sequencing of the pandemic virus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have enabled researchers to monitor its spread and to identify concerning new variants. Two important determinants of variant spread are how frequently they arise within individuals and how likely they are to be transmitted. To characterize within-host diversity and transmission, we deep-sequenced 1313 clinical samples from the United Kingdom. SARS-CoV-2 infections are characterized by low levels of within-host diversity when viral loads are high and by a narrow bottleneck at transmission. Most variants are either lost or occasionally fixed at the point of transmission, with minimal persistence of shared diversity, patterns that are readily observable on the phylogenetic tree. Our results suggest that transmission-enhancing and/or immune-escape SARS-CoV-2 variants are likely to arise infrequently but could spread rapidly if successfully transmitted.


Asunto(s)
COVID-19/transmisión , COVID-19/virología , Variación Genética , SARS-CoV-2/genética , COVID-19/inmunología , Coinfección/virología , Infecciones por Coronavirus/virología , Coronavirus Humano OC43 , Composición Familiar , Genoma Viral , Humanos , Evasión Inmune , Mutación , Filogenia , ARN Viral/genética , RNA-Seq , SARS-CoV-2/patogenicidad , SARS-CoV-2/fisiología , Selección Genética , Glicoproteína de la Espiga del Coronavirus/genética , Reino Unido , Carga Viral
7.
J Infect ; 82(1): 117-125, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33271166

RESUMEN

The COVID-19 pandemic has illustrated the importance of simple, rapid and accurate diagnostic testing. This study describes the validation of a new rapid SARS-CoV-2 RT-LAMP assay for use on extracted RNA or directly from swab offering an alternative diagnostic pathway that does not rely on traditional reagents that are often in short supply during a pandemic. Analytical specificity (ASp) of this new RT-LAMP assay was 100% and analytical sensitivity (ASe) was between 1 × 101 and 1 × 102 copies per reaction when using a synthetic DNA target. The overall diagnostic sensitivity (DSe) and specificity (DSp) of RNA RT-LAMP was 97% and 99% respectively, relative to the standard of care rRT-PCR. When a CT cut-off of 33 was employed, above which increasingly evidence suggests there is a low risk of patients shedding infectious virus, the diagnostic sensitivity was 100%. The DSe and DSp of Direct RT-LAMP (that does not require RNA extraction) was 67% and 97%, respectively. When setting CT cut-offs of ≤33 and ≤25, the DSe increased to 75% and 100%, respectively, time from swab-to-result, CT < 25, was < 15 min. We propose that RNA RT-LAMP could replace rRT-PCR where there is a need for increased sample throughput and Direct RT-LAMP as a near-patient screening tool to rapidly identify highly contagious individuals within emergency departments and care homes during times of increased disease prevalence ensuring negative results still get laboratory confirmation.


Asunto(s)
Prueba de COVID-19/métodos , COVID-19/diagnóstico , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos , ARN Viral/análisis , SARS-CoV-2/genética , Técnicas de Laboratorio Clínico/métodos , Humanos , Tamizaje Masivo/métodos , Reacción en Cadena en Tiempo Real de la Polimerasa , Saliva/virología , Sensibilidad y Especificidad
8.
PLoS Negl Trop Dis ; 14(12): e0008898, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33320860

RESUMEN

Rabies is a fatal neurologic disease caused by lyssavirus infection. Bats are important natural reservoir hosts of various lyssaviruses that can be transmitted to people. The epidemiology and pathogenesis of rabies in bats are poorly understood, making it difficult to prevent zoonotic transmission. To further our understanding of lyssavirus pathogenesis in a natural bat host, an experimental model using straw-colored fruit bats (Eidolon helvum) and Lagos bat virus, an endemic lyssavirus in this species, was developed. To determine the lowest viral dose resulting in 100% productive infection, bats in five groups (four bats per group) were inoculated intramuscularly with one of five doses, ranging from 100.1 to 104.1 median tissue culture infectious dose (TCID50). More bats died due to the development of rabies after the middle dose (102.1 TCID50, 4/4 bats) than after lower (101.1, 2/4; 101.1, 2/4) or higher (103.1, 2/4; 104.1, 2/4) doses of virus. In the two highest dose groups, 4/8 bats developed rabies. Of those bats that remained healthy 3/4 bats seroconverted, suggesting that high antigen loads can trigger a strong immune response that abrogates a productive infection. In contrast, in the two lowest dose groups, 3/8 bats developed rabies, 1/8 remained healthy and seroconverted and 4/8 bats remained healthy and did not seroconvert, suggesting these doses are too low to reliably induce infection. The main lesion in all clinically affected bats was meningoencephalitis associated with lyssavirus-positive neurons. Lyssavirus antigen was detected in tongue epithelium (5/11 infected bats) rather than in salivary gland epithelium (0/11), suggesting viral excretion via the tongue. Thus, intramuscular inoculation of 102.1 TCID50 of Lagos bat virus into straw-colored fruit bats is a suitable model for lyssavirus associated bat rabies in a natural reservoir host, and can help with the investigation of lyssavirus infection dynamics in bats.


Asunto(s)
Quirópteros/virología , Lyssavirus , Infecciones por Rhabdoviridae/veterinaria , Animales , Reservorios de Enfermedades , Rabia/veterinaria , Rabia/virología , Infecciones por Rhabdoviridae/virología
9.
PLoS Negl Trop Dis ; 14(1): e0007897, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31961856

RESUMEN

Oropouche virus (OROV) is responsible for outbreaks of Oropouche fever in parts of South America. We recently identified and isolated OROV from a febrile Ecuadorian patient, however, a previously published qRT-PCR assay did not detect OROV in the patient sample. A primer mismatch to the Ecuadorian OROV lineage was identified from metagenomic sequencing data. We report the optimisation of an qRT-PCR assay for the Ecuadorian OROV lineage, which subsequently identified a further five cases in a cohort of 196 febrile patients. We isolated OROV via cell culture and developed an algorithmically-designed primer set for whole-genome amplification of the virus. Metagenomic sequencing of the patient samples provided OROV genome coverage ranging from 68-99%. The additional cases formed a single phylogenetic cluster together with the initial case. OROV should be considered as a differential diagnosis for Ecuadorian patients with febrile illness to avoid mis-diagnosis with other circulating pathogens.


Asunto(s)
Infecciones por Bunyaviridae/virología , Orthobunyavirus/aislamiento & purificación , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Infecciones por Bunyaviridae/diagnóstico , Estudios de Cohortes , Ecuador , Genoma Viral , Humanos , Metagenoma , Orthobunyavirus/clasificación , Orthobunyavirus/genética , Filogenia , ARN Viral/genética
10.
J Virol ; 94(5)2020 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-31801869

RESUMEN

The Amazon basin is home to numerous arthropod-borne viral pathogens that cause febrile disease in humans. Among these, Oropouche orthobunyavirus (OROV) is a relatively understudied member of the genus Orthobunyavirus, family Peribunyaviridae, that causes periodic outbreaks in human populations in Brazil and other South American countries. Although several studies have described the genetic diversity of the virus, the evolutionary processes that shape the OROV genome remain poorly understood. Here, we present a comprehensive study of the genomic dynamics of OROV that encompasses phylogenetic analysis, evolutionary rate estimates, inference of natural selective pressures, recombination and reassortment, and structural analysis of OROV variants. Our study includes all available published sequences, as well as a set of new OROV genome sequences obtained from patients in Ecuador, representing the first set of genomes from this country. Our results show differing evolutionary processes on the three segments that comprise the viral genome. We infer differing times of the most recent common ancestors of the genome segments and propose that this can be explained by cryptic reassortment. We also present the discovery of previously unobserved putative N-linked glycosylation sites, as well as codons that evolve under positive selection on the viral surface proteins, and discuss the potential role of these features in the evolution of OROV through a combined phylogenetic and structural approach.IMPORTANCE The emergence and reemergence of pathogens such as Zika virus, chikungunya virus, and yellow fever virus have drawn attention toward other cocirculating arboviruses in South America. Oropouche virus (OROV) is a poorly studied pathogen responsible for over a dozen outbreaks since the early 1960s and represents a public health burden to countries such as Brazil, Panama, and Peru. OROV is likely underreported since its symptomatology can be easily confounded with other febrile illnesses (e.g., dengue fever and leptospirosis) and point-of-care testing for the virus is still uncommon. With limited data, there is a need to optimize the information currently available. Analysis of OROV genomes can help us understand how the virus circulates in nature and can reveal the evolutionary forces that shape the genetic diversity of the virus, which has implications for molecular diagnostics and the design of potential vaccines.


Asunto(s)
Evolución Molecular , Genoma Viral , Orthobunyavirus/clasificación , Orthobunyavirus/genética , Filogenia , Infecciones por Bunyaviridae/epidemiología , Infecciones por Bunyaviridae/virología , Ecuador , Humanos , Modelos Moleculares , Conformación Proteica , Selección Genética , América del Sur , Proteínas Virales/química , Proteínas Virales/genética , Secuenciación Completa del Genoma
11.
Emerg Infect Dis ; 24(5): 935-937, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29664378

RESUMEN

We report identification of an Oropouche virus strain in a febrile patient from Ecuador by using metagenomic sequencing and real-time reverse transcription PCR. Virus was isolated from patient serum by using Vero cells. Phylogenetic analysis of the whole-genome sequence showed the virus to be similar to a strain from Peru.


Asunto(s)
Infecciones por Bunyaviridae/virología , Orthobunyavirus/aislamiento & purificación , Adulto , Animales , Infecciones por Bunyaviridae/epidemiología , Chlorocebus aethiops , Ecuador/epidemiología , Humanos , Masculino , Orthobunyavirus/genética , Filogenia , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Células Vero
12.
PLoS Negl Trop Dis ; 12(3): e0006311, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29505617

RESUMEN

Rabies is a fatal neurologic disease caused by lyssavirus infection. People are infected through contact with infected animals. The relative increase of human rabies acquired from bats calls for a better understanding of lyssavirus infections in their natural hosts. So far, there is no experimental model that mimics natural lyssavirus infection in the reservoir bat species. Lagos bat virus is a lyssavirus that is endemic in straw-colored fruit bats (Eidolon helvum) in Africa. Here we compared the susceptibility of these bats to three strains of Lagos bat virus (from Senegal, Nigeria, and Ghana) by intracranial inoculation. To allow comparison between strains, we ensured the same titer of virus was inoculated in the same location of the brain of each bat. All bats (n = 3 per strain) were infected, and developed neurological signs, and fatal meningoencephalitis with lyssavirus antigen expression in neurons. There were three main differences among the groups. First, time to death was substantially shorter in the Senegal and Ghana groups (4 to 6 days) than in the Nigeria group (8 days). Second, each virus strain produced a distinct clinical syndrome. Third, the spread of virus to peripheral tissues, tested by hemi-nested reverse transcriptase PCR, was frequent (3 of 3 bats) and widespread (8 to 10 tissues positive of 11 tissues examined) in the Ghana group, was frequent and less widespread in the Senegal group (3/3 bats, 3 to 6 tissues positive), and was rare and restricted in the Nigeria group (1/3 bats, 2 tissues positive). Centrifugal spread of virus from brain to tissue of excretion in the oral cavity is required to enable lyssavirus transmission. Therefore, the Senegal and Ghana strains seem most suitable for further pathogenesis, and for transmission, studies in the straw-colored fruit bat.


Asunto(s)
Encéfalo/patología , Quirópteros/virología , Lyssavirus/clasificación , Lyssavirus/fisiología , Rabia/veterinaria , Animales , Anticuerpos Antivirales/sangre , Reservorios de Enfermedades , Interacciones Huésped-Patógeno , Inmunohistoquímica , Neuronas/patología , Neuronas/virología , Rabia/epidemiología
13.
Int J Mol Sci ; 19(1)2018 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-29303971

RESUMEN

Bat rabies cases in Europe are mainly attributed to two lyssaviruses, namely European Bat Lyssavirus 1 (EBLV-1) and European Bat Lyssavirus 2 (EBLV-2). Prior to the death of a bat worker in Finland in 1985, very few bat rabies cases were reported. Enhanced surveillance in the two subsequent years (1986-1987) identified 263 cases (more than a fifth of all reported cases to date). Between 1977 and 2016, 1183 cases of bat rabies were reported, with the vast majority (>97%) being attributed to EBLV-1. In contrast, there have been only 39 suspected cases of EBLV-2, of which 34 have been confirmed by virus typing and presently restricted to just two bat species; Myotis daubentonii and Myotis dasycneme. The limited number of EBLV-2 cases in Europe prompted the establishment of a network of European reference laboratories to collate all available viruses and data. Despite the relatively low number of EBLV-2 cases, a large amount of anomalous data has been published in the scientific literature, which we have here reviewed and clarified. In this review, 29 EBLV-2 full genome sequences have been analysed to further our understanding of the diversity and molecular evolution of EBLV-2 in Europe. Analysis of the 29 complete EBLV-2 genome sequences clearly corroborated geographical relationships with all EBLV-2 sequences clustering at the country level irrespective of the gene studied. Further geographical clustering was also observed at a local level. There are high levels of homogeneity within the EBLV-2 species with nucleotide identities ranging from 95.5-100% and amino acid identities between 98.7% and 100%, despite the widespread distribution of the isolates both geographically and chronologically. The mean substitution rate for EBLV-2 across the five concatenated genes was 1.65 × 10-5, and evolutionary clock analysis confirms the slow evolution of EBLV-2 both between and within countries in Europe. This is further supported by the first detailed EBLV-2 intra-roost genomic analysis whereby a relatively high sequence homogeneity was found across the genomes of three EBLV-2 isolates obtained several years apart (2007, 2008, and 2014) from M. daubentonii at the same site (Stokesay Castle, Shropshire, UK).


Asunto(s)
Evolución Molecular , Lyssavirus/genética , Infecciones por Rhabdoviridae/virología , Animales , Genoma Viral , Humanos , Lyssavirus/clasificación , Lyssavirus/aislamiento & purificación , Filología , Infecciones por Rhabdoviridae/epidemiología
14.
Genome Announc ; 5(29)2017 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-28729263

RESUMEN

Canine distemper virus (CDV) has been implicated in population declines of wildlife, including many threatened species. Here we present the full genome of CDV from an Ethiopian wolf, Canis simensis, the world's rarest and most endangered canid.

15.
Genome Announc ; 5(2)2017 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-28082487

RESUMEN

All lyssaviruses (family Rhabdoviridae) cause the disease rabies, an acute progressive encephalitis for which, once symptoms occur, there is no effective cure. Using next-generation sequencing, the full-genome sequence for a novel lyssavirus, Lleida bat lyssavirus (LLEBV), from the original brain of a common bent-winged bat has been confirmed.

16.
Emerg Infect Dis ; 22(8): 1456-9, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27434858

RESUMEN

A novel lyssavirus was isolated from brains of Indian flying foxes (Pteropus medius) in Sri Lanka. Phylogenetic analysis of complete virus genome sequences, and geographic location and host species, provides strong evidence that this virus is a putative new lyssavirus species, designated as Gannoruwa bat lyssavirus.


Asunto(s)
Quirópteros/virología , Lyssavirus/aislamiento & purificación , Infecciones por Rhabdoviridae/veterinaria , Animales , Femenino , Genoma Viral , Lyssavirus/genética , Masculino , Filogenia , Infecciones por Rhabdoviridae/epidemiología , Infecciones por Rhabdoviridae/virología , Sri Lanka/epidemiología
17.
J Gen Virol ; 97(5): 1060-1065, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26932442

RESUMEN

Hantaviruses are emerging zoonotic viruses that cause human diseases. In this study, sera from 642 mammals from La Réunion and Mayotte islands (Indian Ocean) were screened for the presence of hantaviruses by molecular analysis. None of the mammals from La Réunion island was positive, but hantavirus genomic RNA was discovered in 29/160 (18 %) Rattus rattus from Mayotte island. The nucleoprotein coding region was sequenced from the liver and spleen of all positive individuals allowing epidemiological and intra-strain variability analyses. Phylogenetic analysis based on complete coding genomic sequences showed that this Murinae-associated hantavirus is a new variant of Thailand virus. Further studies are needed to investigate hantaviruses in rodent hosts and in Haemorrhagic Fever with Renal Syndrome (HFRS) human cases.


Asunto(s)
Infecciones por Hantavirus/veterinaria , Orthohantavirus/aislamiento & purificación , Ratas , Enfermedades de los Roedores/virología , Animales , Comoras/epidemiología , Femenino , Variación Genética , Orthohantavirus/clasificación , Orthohantavirus/genética , Infecciones por Hantavirus/epidemiología , Infecciones por Hantavirus/virología , Masculino , Filogenia , Enfermedades de los Roedores/epidemiología
18.
Genome Announc ; 3(5)2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26430028

RESUMEN

South African rabies viruses (RABVs) from dogs and jackals (canid viruses) are highly related and most likely originated from a single progenitor. RABV is the cause of most global human rabies cases. The complete genome sequences of 3 RABVs from South Africa and Zimbabwe are reported here.

19.
Genome Announc ; 3(2)2015 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-25814597

RESUMEN

Ethiopian wolves are the rarest canid in the world, with only 500 found in the Ethiopian highlands. Rabies poses the most immediate threat to their survival, causing epizootic cycles of mass mortality. The complete genome sequence of a rabies virus (RABV) derived from an Ethiopian wolf during the most recent epizootic is reported here.

20.
Genome Announc ; 3(1)2015 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-25676752

RESUMEN

All members of the lyssavirus genus cause the disease rabies. European bat lyssavirus 1 (EBLV-1) viruses are divided genetically into three groups according to geographic location and host reservoir. We report here the first genome sequence for an EBLV-1 isolated from Eptesiscus isabellinus in the Iberian Peninsula, Spain.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA