Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 46(15): 7495-7505, 2018 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-30010979

RESUMEN

Recently reported DNA nanoflowers are an interesting class of organic-inorganic hybrid materials which are prepared using DNA polymerases. DNA nanoflowers combine the high surface area and scaffolding of inorganic Mg2P2O7 nanocrystals with the targeting properties of DNA, whilst adding enzymatic stability and enhanced cellular uptake. We have investigated conditions for chemically modifying the inorganic core of these nanoflowers through substitution of Mg2+ with Mn2+, Co2+ or Zn2+ and have characterized the resulting particles. These have a range of novel nanoarchitectures, retain the enzymatic stability of their magnesium counterparts and the Co2+ and Mn2+ DNA nanoflowers have added magnetic properties. We investigate conditions to control different morphologies, DNA content, hybridization properties, and size. Additionally, we show that DNA nanoflower production is not limited to Ф29 DNA polymerase and that the choice of polymerase can influence the DNA length within the constructs. We anticipate that the added control of structure, size and chemistry will enhance future applications.


Asunto(s)
Cobalto/química , ADN Polimerasa Dirigida por ADN/química , ADN/síntesis química , Manganeso/química , Nanopartículas del Metal/química , Oligonucleótidos/síntesis química , Zinc/química , Fagos de Bacillus/enzimología , Nanotecnología/métodos
2.
Inorg Chem ; 44(2): 197-205, 2005 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-15651864

RESUMEN

Variable temperature X-ray and neutron powder diffraction techniques have been used to identify structural phase transitions in Cu-rich A(3)A'BO(6) phases. A transition from monoclinic to rhombohedral symmetry was observed by X-ray diffraction between 700 and 500 K in Sr(3)Cu(1-x)M(x)IrO(6) (M = Ni, Zn; 0 < or = x < or = 0.5). The temperature of the phase change decreased in a linear manner with Cu-content and was essentially independent of the nature of M. Ca(3.1)Cu(0.9)MnO(6) was shown to pass from a rhombohedral phase to a triclinic phase on cooling below 290 K; the structure of the triclinic phase was refined against neutron diffraction data collected at 2 K. Ca(3.1)Cu(0.9)RuO(6) undergoes a transition between a disordered rhombohedral phase and an ordered monoclinic phase when cooled below 623 K. Neutron diffraction has been used to determine the structure as a function of temperature in the range 523 < or =T/K < or = 723 and hence to determine an order parameter for the low temperature phase; the second-order transition is shown to be incomplete 100 K below the critical temperature.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA