Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Cell Endocrinol ; 530: 111286, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-33872733

RESUMEN

Within pituitary gonadotropes, the gonadotropin-releasing hormone receptor (GnRHR) receives hypothalamic input from GnRH neurons that is critical for reproduction. Previous studies have suggested that androgens may regulate GnRHR, although the mechanisms remain unknown. In this study, we demonstrated that androgens positively regulate Gnrhr mRNA in mice. We then investigated the effects of androgens and androgen receptor (AR) on Gnrhr promoter activity in immortalized mouse LßT2 cells, which represent mature gonadotropes. We found that AR positively regulates the Gnrhr proximal promoter, and that this effect requires a hormone response element (HRE) half site at -159/-153 relative to the transcription start site. We also identified nonconsensus, full-length HREs at -499/-484 and -159/-144, which are both positively regulated by androgens on a heterologous promoter. Furthermore, AR associates with the Gnrhr promoter in ChIP. Altogether, we report that GnRHR is positively regulated by androgens through recruitment of AR to the Gnrhr proximal promoter.


Asunto(s)
Andrógenos/farmacología , Gonadotrofos/citología , Receptores Androgénicos/metabolismo , Receptores LHRH/genética , Animales , Línea Celular , Secuenciación de Inmunoprecipitación de Cromatina , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Gonadotrofos/efectos de los fármacos , Gonadotrofos/metabolismo , Masculino , Ratones , Regiones Promotoras Genéticas , Receptores LHRH/metabolismo , Análisis de Secuencia de ADN
2.
Cell Rep ; 32(6): 108025, 2020 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-32783947

RESUMEN

The α7 nicotinic acetylcholine receptor participates in diverse aspects of brain physiology and disease. Neurons tightly control α7 assembly, which relies upon NACHO, an endoplasmic reticulum (ER)-localized integral membrane protein. By constructing α7 chimeras and mutants, we find that NACHO requires the α7 ectodomain to promote receptor assembly and surface trafficking. Also critical are two amino acids in the α7 second transmembrane domain. NACHO-mediated assembly is independent and separable from that induced by cholinergic ligands or RIC-3 protein, the latter of which acts on the large α7 intracellular loop. Proteomics indicates that NACHO associates with the ER oligosaccharyltransferase machinery and with calnexin. Accordingly, NACHO-mediated effects on α7 assembly and channel function require N-glycosylation and calnexin chaperone activity. These studies identify ER pathways that mediate α7 assembly by NACHO and provide insights into novel pharmacological strategies for these crucial nicotinic receptors.


Asunto(s)
Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/metabolismo , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Animales , Encéfalo/citología , Encéfalo/metabolismo , Glicosilación , Células HEK293 , Humanos , Ratones , Ratones Noqueados , Neuronas/metabolismo , Ratas , Transducción de Señal
3.
PLoS Genet ; 14(3): e1007305, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29579048

RESUMEN

The mechanisms by which the sensory environment influences metabolic homeostasis remains poorly understood. In this report, we show that oxygen, a potent environmental signal, is an important regulator of whole body lipid metabolism. C. elegans oxygen-sensing neurons reciprocally regulate peripheral lipid metabolism under normoxia in the following way: under high oxygen and food absence, URX sensory neurons are activated, and stimulate fat loss in the intestine, the major metabolic organ for C. elegans. Under lower oxygen conditions or when food is present, the BAG sensory neurons respond by repressing the resting properties of the URX neurons. A genetic screen to identify modulators of this effect led to the identification of a BAG-neuron-specific neuropeptide called FLP-17, whose cognate receptor EGL-6 functions in URX neurons. Thus, BAG sensory neurons counterbalance the metabolic effect of tonically active URX neurons via neuropeptide communication. The combined regulatory actions of these neurons serve to precisely tune the rate and extent of fat loss to the availability of food and oxygen, and provides an interesting example of the myriad mechanisms underlying homeostatic control.


Asunto(s)
Caenorhabditis elegans/metabolismo , Metabolismo de los Lípidos , Neuropéptidos/metabolismo , Oxígeno/metabolismo , Células Receptoras Sensoriales/metabolismo , Animales , Comunicación Celular , Guanilato Ciclasa/metabolismo , Mucosa Intestinal/metabolismo , Transducción de Señal
4.
Nat Commun ; 8: 14237, 2017 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-28128367

RESUMEN

Serotonin, a central neuromodulator with ancient ties to feeding and metabolism, is a major driver of body fat loss. However, mechanisms by which central serotonin action leads to fat loss remain unknown. Here, we report that the FLP-7 neuropeptide and its cognate receptor, NPR-22, function as the ligand-receptor pair that defines the neuroendocrine axis of serotonergic body fat loss in Caenorhabditis elegans. FLP-7 is secreted as a neuroendocrine peptide in proportion to fluctuations in neural serotonin circuit functions, and its release is regulated from secretory neurons via the nutrient sensor AMPK. FLP-7 acts via the NPR-22/Tachykinin2 receptor in the intestine and drives fat loss via the adipocyte triglyceride lipase ATGL-1. Importantly, this ligand-receptor pair does not alter other serotonin-dependent behaviours including food intake. For global modulators such as serotonin, the use of distinct neuroendocrine peptides for each output may be one means to achieve phenotypic selectivity.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Neuropéptidos/fisiología , Receptores de Neuropéptido/fisiología , Serotonina/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Tejido Adiposo/fisiología , Animales , Conducta Animal/fisiología , Ingestión de Alimentos/fisiología , Indoles/farmacología , Metabolismo de los Lípidos/efectos de los fármacos , Metabolismo de los Lípidos/fisiología , Mutación , Neuronas/fisiología , Neuropéptidos/metabolismo , Sistemas Neurosecretores/fisiología , Piperidinas/farmacología , Receptores Acoplados a Proteínas G , Receptores de Neuropéptido/antagonistas & inhibidores , Receptores de Neuropéptido/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
5.
Cell Rep ; 14(7): 1641-1654, 2016 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-26876168

RESUMEN

It is known that internal physiological state, or interoception, influences CNS function and behavior. However, the neurons and mechanisms that integrate sensory information with internal physiological state remain largely unknown. Here, we identify C. elegans body cavity neurons called URX(L/R) as central homeostatic sensors that integrate fluctuations in oxygen availability with internal metabolic state. We show that depletion of internal body fat reserves increases the tonic activity of URX neurons, which influences the magnitude of the evoked sensory response to oxygen. These responses are integrated via intracellular cGMP and Ca(2+). The extent of neuronal activity thus reflects the balance between the perception of oxygen and available fat reserves. The URX homeostatic sensor ensures that neural signals that stimulate fat loss are only deployed when there are sufficient fat reserves to do so. Our results uncover an interoceptive neuroendocrine axis that relays internal state information to the nervous system.


Asunto(s)
Tejido Adiposo/efectos de los fármacos , Caenorhabditis elegans/efectos de los fármacos , Potenciales Evocados Somatosensoriales/efectos de los fármacos , Homeostasis/efectos de los fármacos , Oxígeno/farmacología , Células Receptoras Sensoriales/efectos de los fármacos , Tejido Adiposo/metabolismo , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/antagonistas & inhibidores , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Calcio/metabolismo , Dióxido de Carbono/farmacología , GMP Cíclico/metabolismo , Potenciales Evocados Somatosensoriales/genética , Subunidades alfa de la Proteína de Unión al GTP/genética , Subunidades alfa de la Proteína de Unión al GTP/metabolismo , Regulación de la Expresión Génica , Guanilato Ciclasa/genética , Guanilato Ciclasa/metabolismo , Homeostasis/genética , Interocepción/efectos de los fármacos , Canales Iónicos/genética , Canales Iónicos/metabolismo , Lipasa/antagonistas & inhibidores , Lipasa/genética , Lipasa/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Células Receptoras Sensoriales/metabolismo , Transducción de Señal
6.
Mol Endocrinol ; 27(8): 1283-94, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23770611

RESUMEN

Kisspeptin signaling through its receptor, Kiss1R, is crucial for many reproductive functions including puberty, sex steroid feedback, and overall fertility. Although the importance of Kiss1R in the brain is firmly established, its role in regulating reproduction at the level of the pituitary is not well understood. This study presents molecular analysis of the role of kisspeptin and Kiss1R signaling in the transcriptional regulation of the gonadotropin gene ß-subunits, LHß and FSHß, using LßT2 gonadotrope cells and murine primary pituitary cells. We show that kisspeptin induces LHß and FSHß gene expression, and this induction is protein kinase C dependent and mediated by the immediate early genes, early growth response factor 1 and cFos, respectively. Additionally, kisspeptin induces transcription of the early growth response factor 1 and cFos promoters in LßT2 cells. Kisspeptin also increases gonadotropin gene expression in mouse primary pituitary cells in culture. Furthermore, we find that Kiss1r expression is enhanced in the pituitary of female mice during the estradiol-induced LH surge, a critical component of the reproductive cycle. Overall, our findings indicate that kisspeptin regulates gonadotropin gene expression through the activation of Kiss1R signaling through protein kinase C, inducing immediate early genes in vitro, and responds to physiologically relevant cues in vivo, suggesting that kisspeptin affects pituitary gene expression to regulate reproductive function.


Asunto(s)
Hormona Folículo Estimulante de Subunidad beta/metabolismo , Gonadotrofos/metabolismo , Kisspeptinas/metabolismo , Hormona Luteinizante de Subunidad beta/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animales , Células Cultivadas , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Femenino , Hormona Folículo Estimulante de Subunidad beta/biosíntesis , Hormona Folículo Estimulante de Subunidad beta/genética , Expresión Génica , Regulación de la Expresión Génica , Genes Inmediatos-Precoces/genética , Gonadotrofos/citología , Hormona Luteinizante de Subunidad beta/biosíntesis , Hormona Luteinizante de Subunidad beta/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Regiones Promotoras Genéticas/genética , Proteína Quinasa C/metabolismo , Proteínas Proto-Oncogénicas c-fos/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Receptores Acoplados a Proteínas G/biosíntesis , Receptores de Kisspeptina-1 , Reproducción/genética , Transducción de Señal , Factor de Transcripción AP-1/metabolismo , Transcripción Genética
7.
Mol Endocrinol ; 27(3): 422-36, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23371388

RESUMEN

Multiple homeodomain transcription factors are crucial for pituitary organogenesis and cellular differentiation. A homeodomain repressor, Msx1, is expressed from the ventral aspect of the developing anterior pituitary and implicated in gonadotrope differentiation. Here, we find that Msx1 represses transcription of lineage-specific pituitary genes such as the common α-glycoprotein subunit (αGSU) and GnRH receptor (GnRHR) promoters in the mouse gonadotrope-derived cell lines, αT3-1 and LßT2. Repression of the mouse GnRHR promoter by Msx1 is mediated through a consensus-binding motif in the downstream activin regulatory element (DARE). Truncation and mutation analyses of the human αGSU promoter map Msx1 repression to a site at -114, located at the junctional regulatory element (JRE). Dlx activators are closely related to the Msx repressors, acting through the same elements, and Dlx3 and Dlx2 act as transcriptional activators for GnRHR and αGSU, respectively. Small interfering RNA knockdown of Msx1 in αT3-1 cells increases endogenous αGSU and GnRHR mRNA expression. Msx1 gene expression reaches its maximal expression at the rostral edge at e13.5. The subsequent decline in Msx1 expression specifically coincides with the onset of expression of both αGSU and GnRHR. The expression levels of both αGSU and GnRHR in Msx1-null mice at e18.5 are higher compared with wild type, further confirming a role for Msx1 in the repression of αGSU and GnRHR. In summary, Msx1 functions as a negative regulator early in pituitary development by repressing the gonadotrope-specific αGSU and GnRHR genes, but a temporal decline in Msx1 expression alleviates this repression allowing induction of GnRHR and αGSU, thus serving to time the onset of gonadotrope-specific gene program.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Hormonas Glicoproteicas de Subunidad alfa/genética , Gonadotrofos/metabolismo , Factor de Transcripción MSX1/metabolismo , Receptores LHRH/genética , Proteínas Represoras/metabolismo , Animales , Secuencia de Bases , Sitios de Unión/genética , Diferenciación Celular/genética , Línea Celular , Secuencia de Consenso/genética , Hormonas Glicoproteicas de Subunidad alfa/metabolismo , Gonadotrofos/citología , Proteínas de Homeodominio/metabolismo , Humanos , Factor de Transcripción MSX1/genética , Ratones , Ratones Noqueados , Datos de Secuencia Molecular , Adenohipófisis/citología , Adenohipófisis/embriología , Adenohipófisis/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo , Ratas , Receptores LHRH/metabolismo , Proteínas Represoras/genética , Elementos de Respuesta/genética , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética
8.
Endocrinology ; 153(9): 4522-32, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22778229

RESUMEN

Sex steroid hormone production and feedback mechanisms are critical components of the hypothalamic-pituitary-gonadal (HPG) axis and regulate fetal development, puberty, fertility, and menopause. In female mammals, developmental exposure to excess androgens alters the development of the HPG axis and has pathophysiological effects on adult reproductive function. This study presents an in-depth reproductive analysis of a murine model of prenatal androgenization (PNA) in which females are exposed to a low dose of dihydrotestosterone during late prenatal development on embryonic d 16.5-18.5. We determined that PNA females had advanced pubertal onset and a delay in the time to first litter, compared with vehicle-treated controls. The PNA mice also had elevated testosterone, irregular estrous cyclicity, and advanced reproductive senescence. To assess the importance of the window of androgen exposure, dihydrotestosterone was administered to a separate cohort of female mice on postnatal d 21-23 [prepubertal androgenization (PPA)]. PPA significantly advanced the timing of pubertal onset, as observed by age of the vaginal opening, yet had no effects on testosterone or estrous cycling in adulthood. The absence of kisspeptin receptor in Kiss1r-null mice did not change the acceleration of puberty by the PNA and PPA paradigms, indicating that kisspeptin signaling is not required for androgens to advance puberty. Thus, prenatal, but not prepubertal, exposure to low levels of androgens disrupts normal reproductive function throughout life from puberty to reproductive senescence.


Asunto(s)
Andrógenos/farmacología , Pubertad/efectos de los fármacos , Reproducción/efectos de los fármacos , Envejecimiento/efectos de los fármacos , Animales , Dihidrotestosterona/farmacología , Ciclo Estral/efectos de los fármacos , Femenino , Ratones , Embarazo , Efectos Tardíos de la Exposición Prenatal
9.
J Mol Med (Berl) ; 89(7): 677-87, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21553032

RESUMEN

Renin-angiotensin system (RAS) activation is associated with arrhythmias. We investigated the effects of RAS inhibition in cardiac-specific angiotensin-converting enzyme (ACE) overexpression (ACE 8/8) mice, which exhibit proclivity to ventricular tachycardia (VT) and sudden death because of reduced connexin43 (Cx43). ACE 8/8 mice were treated with an ACE inhibitor (captopril) or an angiotensin receptor type-1 blocker (losartan). Subsequently, electrophysiological studies were performed, and the hearts were extracted for Cx43 quantification using immunoblotting, immunohistochemistry, fluorescent dye spread method, and sodium current quantification using whole cell patch clamping. VT was induced in 12.5% of captopril-treated ACE 8/8 and in 28.6% of losartan-treated mice compared to 87.5% of untreated mice (P < 0.01). Losartan and captopril treatment increased total Cx43 2.4-fold (P = 0.01) and the Cx43 phosphorylation ratio 2.3-fold (P = 0.005). Treatment was associated with a recovery of gap junctional conductance. Survival in treated mice improved to 0.78 at 10 weeks (95% confidence interval 0.64 to 0.92), compared to the expected survival of less than 0.50. In a model of RAS activation, arrhythmic risk was correlated with reduced Cx43 amount and phosphorylation. RAS inhibition resulted in increased total and phosphorylated Cx43, decreased VT inducibility, and improved survival.


Asunto(s)
Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Conexina 43/metabolismo , Sistema Renina-Angiotensina , Riesgo , Taquicardia Ventricular/fisiopatología , Angiotensina II/antagonistas & inhibidores , Animales , Modelos Animales de Enfermedad , Electrocardiografía , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Peptidil-Dipeptidasa A/genética , Peptidil-Dipeptidasa A/metabolismo , Fosforilación/efectos de los fármacos , Taquicardia Ventricular/metabolismo
10.
Am J Physiol Heart Circ Physiol ; 293(1): H182-92, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17337599

RESUMEN

Renin-angiotensin (RAS) system activation is associated with an increased risk of sudden death. Previously, we used cardiac-restricted angiotensin-converting enzyme (ACE) overexpression to construct a mouse model of RAS activation. These ACE 8/8 mice die prematurely and abruptly. Here, we have investigated cardiac electrophysiological abnormalities that may contribute to early mortality in this model. In ACE 8/8 mice, surface ECG voltages are reduced. Intracardiac electrograms showed atrial and ventricular potential amplitudes of 11% and 24% compared with matched wild-type (WT) controls. The atrioventricular (AV), atrio-Hisian (AH), and Hisian-ventricular (HV) intervals were prolonged 2.8-, 2.6-, and 3.9-fold, respectively, in ACE 8/8 vs. WT mice. Various degrees of AV nodal block were present only in ACE 8/8 mice. Intracardiac electrophysiology studies demonstrated that WT and heterozygote (HZ) mice were noninducible, whereas 83% of ACE 8/8 mice demonstrated ventricular tachycardia with burst pacing. Atrial connexin 40 (Cx40) and connexin 43 (Cx43) protein levels, ventricular Cx43 protein level, atrial and ventricular Cx40 mRNA abundances, ventricular Cx43 mRNA abundance, and atrial and ventricular cardiac Na(+) channel (Scn5a) mRNA abundances were reduced in ACE 8/8 compared with WT mice. ACE 8/8 mice demonstrated ventricular Cx43 dephosphorylation. Atrial and ventricular L-type Ca(2+) channel, Kv4.2 K(+) channel alpha-subunit, and Cx45 mRNA abundances and the peak ventricular Na(+) current did not differ between the groups. In isolated heart preparations, a connexin blocker, 1-heptanol (0.5 mM), produced an electrophysiological phenotype similar to that seen in ACE 8/8 mice. Therefore, cardiac-specific ACE overexpression resulted in changes in connexins consistent with the phenotype of low-voltage electrical activity, conduction defects, and induced ventricular arrhythmia. These results may help explain the increased risk of arrhythmia in states of RAS activation such as heart failure.


Asunto(s)
Conexinas/metabolismo , Bloqueo Cardíaco/fisiopatología , Sistema de Conducción Cardíaco/fisiopatología , Peptidil-Dipeptidasa A/metabolismo , Taquicardia Ventricular/fisiopatología , Animales , Regulación Enzimológica de la Expresión Génica , Ratones , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...