Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Bacteriol ; : e0000424, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39171913

RESUMEN

Streptococcus pneumoniae (pneumococcus) causes a wide range of important human infectious diseases, including pneumonia, pneumonia-derived sepsis, otitis media, and meningitis. Pneumococcus produces numerous secreted proteins that are critical for normal physiology and pathogenesis. The membrane targeting and translocation of these secreted proteins are partly mediated by the signal recognition particle (SRP) complex, which consists of 4.5S small cytoplasmic RNA (ScRNA), and the Ffh, and FtsY proteins. Here, we report that pneumococcal ∆scRNA, ∆ffh, and ∆ftsY mutants were significantly impaired in competence induction, competence pili production, exogenous DNA uptake, and genetic transformation. Also, the ∆scRNA mutant was significantly attenuated in the mouse models of bacteremia and pneumonia. Interestingly, unlike the ∆scRNA, both ∆ffh and ∆ftsY mutants had growth defects on Todd-Hewitt Agar, which were alleviated by the provision of free amino acids or serum. Differences in nutritional requirements between ∆ffh and ∆ftsY vs ∆scRNA suggest that Ffh and FtsY may be partially functional in the absence of ScRNA. Finally, the insertase YidC2, which could functionally rescue some SRP mutations in other streptococcal species, was not essential for pneumococcal genetic transformation. Collectively, these results indicate that ScRNA is crucial for the successful development of genetic competence and virulence in pneumococcus. IMPORTANCE: Streptococcus pneumoniae (pneumococcus) causes multiple important infectious diseases in humans. The signal recognition particle (SRP) complex, which comprised 4.5S small cytoplasmic RNA (ScRNA), and the Ffh and FtsY proteins, mediates membrane targeting and translocation of secreted proteins in all organisms. However, the role of SRP and ScRNA has not been characterized during the induction of the competence system for genetic transformation and virulence in pneumococcus. By using a combination of genetic, biochemical, proteomic, and imaging approaches, we demonstrated that the SRP complex plays a significant role in membrane targeting of competence system-regulated effectors important for genetic transformation, virulence during bacteremia and pneumonia infections, and nutritional acquisition.

2.
PLoS Genet ; 20(6): e1011162, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38885280

RESUMEN

Very little is known about the process of meiosis in the apicomplexan parasite Cryptosporidium despite the essentiality of sex in its life cycle. Most cell lines only support asexual growth of Cryptosporidium parvum (C. parvum), but stem cell derived intestinal epithelial cells grown under air-liquid interface (ALI) conditions support the sexual cycle. To examine chromosomal dynamics during meiosis in C. parvum, we generated two transgenic lines of parasites that were fluorescently tagged with mCherry or GFP on chromosomes 1 or 5, respectively. Infection of ALI cultures or Ifngr1-/- mice with mCherry and GFP parasites resulted in cross-fertilization and the formation of "yellow" oocysts, which contain 4 haploid sporozoites that are the product of meiosis. Recombinant oocysts from the F1 generation were purified and used to infect HCT-8 cultures, and phenotypes of the progeny were observed by microscopy. All possible phenotypes predicted by independent segregation were represented equally (~25%) in the population, indicating that C. parvum chromosomes exhibit a Mendelian inheritance pattern. The most common pattern observed from the outgrowth of single oocysts included all possible parental and recombinant phenotypes derived from a single meiotic event, suggesting a high rate of crossover. To estimate the frequency of crossover, additional loci on chromosomes 1 and 5 were tagged and used to monitor intrachromosomal crosses in Ifngr1-/- mice. Both chromosomes showed a high frequency of crossover compared to other apicomplexans with map distances (i.e., 1% recombination) of 3-12 kb. Overall, a high recombination rate may explain many unique characteristics observed in Cryptosporidium spp. such as high rates of speciation, wide variation in host range, and rapid evolution of host-specific virulence factors.


Asunto(s)
Criptosporidiosis , Cryptosporidium parvum , Meiosis , Oocistos , Recombinación Genética , Animales , Cryptosporidium parvum/genética , Ratones , Criptosporidiosis/parasitología , Criptosporidiosis/genética , Meiosis/genética , Humanos , Receptores de Interferón/genética , Receptor de Interferón gamma , Segregación Cromosómica/genética , Esporozoítos/genética , Ratones Noqueados , Fenotipo
3.
bioRxiv ; 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38352509

RESUMEN

Very little is known about the process of meiosis in the apicomplexan parasite Cryptosporidium despite the essentiality of sex in its life cycle. Most cell lines only support asexual growth of Cryptosporidium parvum (C. parvum), but stem cell derived intestinal epithelial cells grown under air-liquid interface (ALI) conditions support the sexual cycle. To examine chromosomal dynamics during meiosis in C. parvum, we generated two transgenic lines of parasites that were fluorescently tagged with mCherry or GFP on chromosomes 1 or 5, respectively. Infection of ALI cultures or Ifngr1-/- mice with mCherry and GFP parasites produced "yellow" oocysts generated by cross-fertilization. Outcrossed oocysts from the F1 generation were purified and used to infect HCT-8 cultures, and phenotypes of the progeny were observed by microscopy. All possible phenotypes predicted by independent segregation were represented equally (~25%) in the population, indicating that C. parvum chromosomes exhibit a Mendelian inheritance pattern. Unexpectedly, the most common pattern observed from the outgrowth of single oocysts included all possible parental and recombinant phenotypes derived from a single meiotic event, suggesting a high rate of crossover. To estimate the frequency of crossover, additional loci on chromosomes 1 and 5 were tagged and used to monitor intrachromosomal crosses in Ifngr1-/- mice. Both chromosomes showed a high frequency of crossover compared to other apicomplexans with map distances (i.e., 1% recombination) of 3-12 kb. Overall, a high recombination rate may explain many unique characteristics observed in Cryptosporidium spp. such as high rates of speciation, wide variation in host range, and rapid evolution of host-specific virulence factors.

4.
Gut Microbes ; 16(1): 2297897, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38189373

RESUMEN

Cryptosporidiosis is a major cause of severe diarrheal disease in infants from resource poor settings. The majority of infections are caused by the human-specific pathogen C. hominis and absence of in vitro growth platforms has limited our understanding of host-pathogen interactions and development of effective treatments. To address this problem, we developed a stem cell-derived culture system for C. hominis using human enterocytes differentiated under air-liquid interface (ALI) conditions. Human ALI cultures supported robust growth and complete development of C. hominis in vitro including all life cycle stages. Cryptosporidium infection induced a strong interferon response from enterocytes, possibly driven, in part, by an endogenous dsRNA virus in the parasite. Prior infection with Cryptosporidium induced type III IFN secretion and consequently blunted infection with Rotavirus, including live attenuated vaccine strains. The development of hALI provides a platform for further studies on human-specific pathogens, including clinically important coinfections that may alter vaccine efficacy.


Asunto(s)
Criptosporidiosis , Cryptosporidium , Microbioma Gastrointestinal , Rotavirus , Lactante , Humanos , Interferón lambda , Células Epiteliales , Zea mays
5.
Nat Commun ; 15(1): 380, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38191884

RESUMEN

Cryptosporidium parvum is an obligate intracellular parasite with a highly reduced mitochondrion that lacks the tricarboxylic acid cycle and the ability to generate ATP, making the parasite reliant on glycolysis. Genetic ablation experiments demonstrated that neither of the two putative glucose transporters CpGT1 and CpGT2 were essential for growth. Surprisingly, hexokinase was also dispensable for parasite growth while the downstream enzyme aldolase was required, suggesting the parasite has an alternative way of obtaining phosphorylated hexose. Complementation studies in E. coli support a role for direct transport of glucose-6-phosphate from the host cell by the parasite transporters CpGT1 and CpGT2, thus bypassing a requirement for hexokinase. Additionally, the parasite obtains phosphorylated glucose from amylopectin stores that are released by the action of the essential enzyme glycogen phosphorylase. Collectively, these findings reveal that C. parvum relies on multiple pathways to obtain phosphorylated glucose both for glycolysis and to restore carbohydrate reserves.


Asunto(s)
Criptosporidiosis , Cryptosporidium parvum , Cryptosporidium , Humanos , Cryptosporidium parvum/genética , Glucosa , Fosfatos , Escherichia coli , Hexoquinasa
6.
bioRxiv ; 2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37693422

RESUMEN

Cryptosporidiosis is a major cause of severe diarrheal disease in infants from resource poor settings. The majority of infections are caused by the human-specific pathogen C. hominis and absence of in vitro growth platforms has limited our understanding of host-pathogen interactions and development of effective treatments. To address this problem, we developed a stem cell-derived culture system for C. hominis using human enterocytes differentiated under air-liquid interface (ALI) conditions. Human ALI cultures supported robust growth and complete development of C. hominis in vitro including all life cycle stages. C. hominis infection induced a strong interferon response from enterocytes, likely driven by an endogenous dsRNA virus in the parasite. Prior infection with Cryptosporidium induced type III IFN secretion and consequently blunted infection with Rotavirus, including live attenuated vaccine strains. The development of hALI provides a platform for further studies on human-specific pathogens, including clinically important coinfections that may alter vaccine efficacy.

7.
Antimicrob Agents Chemother ; 67(10): e0056923, 2023 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-37655889

RESUMEN

Cryptosporidium is an intracellular protozoan parasite that causes serious enteric disease in humans and in a wide range of animals worldwide. Despite its high prevalence, no effective therapeutic drugs are available against life-threatening cryptosporidiosis in at-risk populations including malnourished children, immunocompromised patients, and neonatal calves. Thus, new efficacious drugs are urgently needed to treat all susceptible populations with cryptosporidiosis. Unlike other apicomplexans, Cryptosporidium parvum lacks the tricarboxylic acid cycle and the oxidative phosphorylation steps, making it solely dependent on glycolysis for metabolic energy production. We have previously reported that individual inhibitors of two unique glycolytic enzymes, the plant-like pyruvate kinase (CpPyK) and the bacterial-type lactate dehydrogenase (CpLDH), are effective against C. parvum, both in vitro and in vivo. Herein, we have derived combinations of CpPyK and CpLDH inhibitors with strong synergistic effects against the growth and survival of C. parvum, both in vitro and in an infection mouse model. In infected immunocompromised mice, compound combinations of NSC303244 + NSC158011 and NSC252172 + NSC158011 depicted enhanced efficacy against C. parvum reproduction and ameliorated intestinal lesions of cryptosporidiosis at doses fourfold lower than the total effective doses of individual compounds. Importantly, unlike individual compounds, NSC303244 + NSC158011 combination was effective in clearing the infection completely without relapse in immunocompromised mice. Collectively, our study has unveiled compound combinations that simultaneously block two essential catalytic steps for metabolic energy production in C. parvum to achieve improved efficacy against the parasite. These combinations are, therefore, lead compounds for the development of a new generation of efficacious anti-cryptosporidial drugs.


Asunto(s)
Criptosporidiosis , Cryptosporidium parvum , Cryptosporidium , Niño , Humanos , Animales , Bovinos , Ratones , Criptosporidiosis/tratamiento farmacológico , Criptosporidiosis/parasitología , Intestinos , L-Lactato Deshidrogenasa/metabolismo , L-Lactato Deshidrogenasa/farmacología
8.
bioRxiv ; 2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37425855

RESUMEN

Cryptosporidium parvum is an obligate intracellular parasite with a highly reduced mitochondrion that lacks the TCA cycle and the ability to generate ATP, making the parasite reliant on glycolysis. Genetic ablation experiments demonstrated that neither of the two putative glucose transporters CpGT1 and CpGT2 were essential for growth. Surprisingly, hexokinase was also dispensable for parasite growth while the downstream enzyme aldolase was required, suggesting the parasite has an alternative way of obtaining phosphorylated hexose. Complementation studies in E. coli support a role for direct transport of glucose-6-phosphate from the host cell by the parasite transporters CpGT1 and CpGT2, thus bypassing a requirement for hexokinase. Additionally, the parasite obtains phosphorylated glucose from amylopectin stores that are released by the action of the essential enzyme glycogen phosphorylase. Collectively, these findings reveal that C. parvum relies on multiple pathways to obtain phosphorylated glucose both for glycolysis and to restore carbohydrate reserves.

9.
Antimicrob Agents Chemother ; 67(6): e0000823, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37212658

RESUMEN

In humans, nematode infections are prevalent in developing countries, causing long-term ill health, particularly in children. Worldwide, nematode infections are prevalent in livestock and pets, affecting productivity and health. Anthelmintic drugs are the primary means of controlling nematodes, but there is now high prevalence of anthelmintic resistance, requiring urgent identification of new molecular targets for anthelmintics with novel mechanisms of action. Here, we identified orthologous genes for phosphoethanolamine methyltransferases (PMTs) in nematodes within the families Trichostrongylidae, Dictyocaulidae, Chabertiidae, Ancylostomatoidea, and Ascarididae. We characterized these putative PMTs and found that they possess bona fide PMT catalytic activities. By complementing a mutant yeast strain lacking the ability to synthesize phosphatidylcholine, the PMTs were validated to catalyze the biosynthesis of phosphatidylcholine. Using an in vitro phosphoethanolamine methyltransferase assay with PMTs as enzymes, we identified compounds with cross-inhibitory effects against the PMTs. Corroboratively, treatment of PMT-complemented yeast with the PMT inhibitors blocked growth of the yeast, underscoring the essential role of the PMTs in phosphatidylcholine synthesis. Fifteen of the inhibitors with the highest activity against complemented yeast were tested against Haemonchus contortus using larval development and motility assays. Among them, four were found to possess potent anthelmintic activity against both multiple drug-resistant and susceptible isolates of H. contortus, with IC50 values (95% confidence interval) of 4.30 µM (2.15-8.28), 4.46 µM (3.22-6.16), 28.7 µM (17.3-49.5), and 0.65 µM (0.21-1.88). Taken together, we have validated a molecular target conserved in a broad range of nematodes and identified its inhibitors that possess potent in vitro anthelmintic activity.


Asunto(s)
Antihelmínticos , Haemonchus , Nematodos , Infecciones por Nematodos , Animales , Niño , Humanos , Saccharomyces cerevisiae/genética , Antihelmínticos/farmacología , Metiltransferasas/genética , Haemonchus/genética , Fosfatidilcolinas
10.
Front Cell Infect Microbiol ; 13: 1115522, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36761902

RESUMEN

The intracellular protozoan parasite of the genus Cryptosporidium is among the leading causes of waterborne diarrheal disease outbreaks throughout the world. The parasite is transmitted by ingestion of infective oocysts that are highly stable in the environment and resistant to almost all conventional disinfection methods and water treatments. Control of the parasite infection is exceedingly difficult due to the excretion of large numbers of oocysts in the feces of infected individuals that contaminate the environment and serve as a source of infection for susceptible hosts including humans and animals. Drug development against the parasite is challenging owing to its limited genetic tractability, absence of conventional drug targets, unique intracellular location within the host, and the paucity of robust cell culture platforms for continuous parasite propagation. Despite the high prevalence of the parasite, the only US Food and Drug Administration (FDA)-approved treatment of Cryptosporidium infections is nitazoxanide, which has shown moderate efficacy in immunocompetent patients. More importantly, no effective therapeutic drugs are available for treating severe, potentially life-threatening cryptosporidiosis in immunodeficient patients, young children, and neonatal livestock. Thus, safe, inexpensive, and efficacious drugs are urgently required to reduce the ever-increasing global cryptosporidiosis burden especially in low-resource countries. Several compounds have been tested for both in vitro and in vivo efficacy against the disease. However, to date, only a few experimental compounds have been subjected to clinical trials in natural hosts, and among those none have proven efficacious. This review provides an overview of the past and present anti-Cryptosporidium pharmacotherapy in humans and agricultural animals. Herein, we also highlight the progress made in the field over the last few years and discuss the different strategies employed for discovery and development of effective prospective treatments for cryptosporidiosis.


Asunto(s)
Criptosporidiosis , Cryptosporidium , Estados Unidos , Animales , Recién Nacido , Niño , Humanos , Preescolar , Criptosporidiosis/epidemiología , Granjas , Cryptosporidium/genética , Ganado , Desarrollo de Medicamentos , Oocistos
11.
Int J Parasitol Parasites Wildl ; 19: 89-95, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36090665

RESUMEN

Avian malaria, caused by Plasmodium spp. and transmitted by mosquitos, is a leading cause of mortality of captive penguins. Antimalarial drugs are currently used to control infections in penguins. However, the effectiveness of treatment reduces significantly by the time the clinical signs appear, while early and unnecessary treatment interferes with development of protective immunity. Therefore, for suppressing parasitemia without affecting the development of immunity in captive penguins, antimalaria drugs need to be administered at the right time, which requires reliable diagnostic tools that can determine the levels of circulating antimalaria antibodies. In the present study, we have developed an enzyme-linked immunosorbent assay (ELISA) diagnostic assay based on the merozoite surface protein 1 (MSP-1) of P. relictum isolate SGS1 to specifically detect and relatively quantify antimalaria antibodies in penguins. We expressed and purified a truncated P. relictum isolate SGS1 MSP-1 and optimized its biotinylation and subsequent conjugation to streptavidin alkaline phosphatase for signal generation in ELISA. We tested the assay by analyzing sera obtained from penguins at the Baltimore Zoo, from Spring through Fall, and found that levels of detectable antibodies against MSP-1 varied seasonally for individual penguins, consistent with the expected seasonal variations in avian malaria prevalence. Corroboratively, we analyzed the sensitivity of the assay by titrating positive sera and found that the signal intensity generated was serum concentration-dependent, thus validating the ability of the assay to detect and relatively quantify the levels of antimalaria antibodies in penguin sera.

12.
Artículo en Inglés | MEDLINE | ID: mdl-35462232

RESUMEN

Parasitic diseases such as toxoplasmosis and cryptosporidiosis remain serious global health challenges, not only to humans but also to domestic animals and wildlife. With only limited treatment options available, Toxoplasma gondii and Cryptosporidium parvum (the causative agents of toxoplasmosis and cryptosporidiosis, respectively) constitute a substantial health threat especially to young children and immunocompromised individuals. Herein, we report the synthesis and biological evaluation of a series of novel (1-benzyl-4-triazolyl)-indole-2-carboxamides and related compounds that show efficacy against T. gondii and C. parvum. Closely related analogs 7c (JS-2-30) and 7e (JS-2-44) showed low micromolar activity with IC50 indices ranging between 2.95 µM and 7.63 µM against both T. gondii and C. parvum, whereas the compound representing (1-adamantyl)-4-phenyl-triazole, 11b (JS-2-41), showed very good activity with an IC50 of 1.94 µM, and good selectivity against T. gondii in vitro. Importantly, compounds JS-2-41 and JS-2-44 showed appreciable in vivo efficacy in decreasing the number of T. gondii cysts in the brains of Brown Norway rats. Together, these results indicate that (1-benzyl-4-triazolyl)-indole-2-carboxamides and (1-adamantyl)-4-phenyl-triazoles are potential hits for medicinal chemistry explorations in search for novel antiparasitic agents for effective treatment of cryptosporidiosis and toxoplasmosis.


Asunto(s)
Antiprotozoarios , Criptosporidiosis , Cryptosporidium parvum , Cryptosporidium , Toxoplasma , Toxoplasmosis , Animales , Antiprotozoarios/uso terapéutico , Niño , Preescolar , Criptosporidiosis/tratamiento farmacológico , Humanos , Indoles/farmacología , Indoles/uso terapéutico , Toxoplasmosis/tratamiento farmacológico , Triazoles/farmacología
13.
Int J Parasitol Drugs Drug Resist ; 15: 126-133, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33647675

RESUMEN

Cryptosporidium parvum is a protozoan parasite that infects intestinal epithelial cells causing malabsorption and severe diarrhea. The monoterpene thymol has been reported to have antifungal and antibacterial properties but less is known about the antiparasitic effect of this compound. Terpenes are sometimes unsuitable for therapeutic and food applications because of their instability. Esterification of terpenes eliminates this disadvantage. The present study evaluates the effects of thymol (Th) and a thymol ester, thymol octanoate (TO), against C. parvum infectivity in vitro. The cytotoxicity IC50 value for TO after 24 h of treatment was 309.6 µg/mL, significantly higher than that of Th (122.5 µg/mL) in a human adenocarcinoma cell line (HCT-8). In the same way, following 48 h of treatment, the cytotoxicity IC50 value for TO was significantly higher (139 µg/mL) than that of Th (75.5 µg/mL). These results indicate that esterification significantly reduces Th cytotoxicity. Dose-dependent effects were observed for TO and Th when both parasite invasion and parasite growth assays were evaluated. When evaluated for their activity against C. parvum growth cultured in vitro in HCT-8 cells, the anti-cryptosporidial IC50 values were 35.5 and 7.5 µg/mL, for TO and Th, respectively. Together, these findings indicate that esterified thymol has anti-cryptosporidial effect comparable with its parental compound thymol, but with improved safety margins in mammalian cells and better physicochemical properties that could make it more suitable for diverse applications as an antiparasitic agent.


Asunto(s)
Criptosporidiosis , Cryptosporidium parvum , Cryptosporidium , Animales , Técnicas de Cultivo de Célula , Ésteres/farmacología , Humanos , Timol/farmacología
14.
Front Microbiol ; 12: 800293, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35046922

RESUMEN

Cryptosporidium parvum is a highly prevalent protozoan parasite that causes a diarrheal disease in humans and animals worldwide. Thus far, the moderately effective nitazoxanide is the only drug approved by the United States Food and Drug Administration for treating cryptosporidiosis in immunocompetent humans. However, no effective drug exists for the severe disease seen in young children, immunocompromised individuals and neonatal livestock. C. parvum lacks the Krebs cycle and the oxidative phosphorylation steps, making it dependent solely on glycolysis for metabolic energy production. Within its glycolytic pathway, C. parvum possesses two unique enzymes, the bacterial-type lactate dehydrogenase (CpLDH) and the plant-like pyruvate kinase (CpPyK), that catalyze two sequential steps for generation of essential metabolic energy. We have previously reported that inhibitors of CpLDH are effective against C. parvum, both in vitro and in vivo. Herein, we developed an in vitro assay for the enzymatic activity of recombinant CpPyK protein and used it to screen a chemical compound library for inhibitors of CpPyK's activity. The identified inhibitors were tested (at non-toxic concentrations) for efficacy against C. parvum using in vitro assays, and an in vivo mouse infection model. We identified six CpPyK inhibitors that blocked in vitro growth and proliferation of C. parvum at low micromolar concentrations (EC50 values ranging from 10.29 to 86.01 µM) that were non-toxic to host cells. Among those six compounds, two (NSC252172 and NSC234945) were found to be highly efficacious against cryptosporidiosis in immunocompromised mice at a dose of 10 mg/kg body weight, with very significant reduction in parasite load and amelioration of intestinal pathologies. Together, these findings have unveiled inhibitors for an essential molecular target in C. parvum and demonstrated their efficacy against the parasite in vitro and in vivo. These inhibitors are, therefore, potential lead-compounds for developing efficacious treatments for cryptosporidiosis.

15.
Artículo en Inglés | MEDLINE | ID: mdl-33011650

RESUMEN

Toxoplasma gondii and Cryptosporidium parvum are protozoan parasites that are highly prevalent and opportunistically infect humans worldwide, but for which completely effective and safe medications are lacking. Herein, we synthesized a series of novel small molecules bearing the diacyl urea scaffold and related structures, and screened them for in vitro cytotoxicity and antiparasitic activity against T. gondii and C. parvum. We identified one compound (GMG-1-09), and four compounds (JS-1-09, JS-2-20, JS-2-35 and JS-2-49) with efficacy against C. parvum and T. gondii, respectively, at low micromolar concentrations and showed appreciable selectivity in human host cells. Among the four compounds with efficacy against T. gondii, JS-1-09 representing the diacyl urea scaffold was the most effective, with an anti-Toxoplasma IC50 concentration (1.21 µM) that was nearly 53-fold lower than its cytotoxicity IC50 concentration, indicating that this compound has a good selectivity index. The other three compounds (JS-2-20, JS-2-35 and JS-2-49) were structurally more divergent from JS-1-09 as they represent the acyl urea and acyl carbamate scaffold. This appeared to correlate with their anti-Toxoplasma activity, suggesting that these compounds' potency can likely be enhanced by selective structural modifications. One compound, GMG-1-09 representing acyl carbamate scaffold, depicted in vitro efficacy against C. parvum with an IC50 concentration (32.24 µM) that was 14-fold lower than its cytotoxicity IC50 concentration in a human intestinal cell line. Together, our studies unveil a series of novel synthetic acyl/diacyl urea and acyl carbamate scaffold-based small molecule compounds with micromolar activity against T. gondii and C. parvum that can be explored further for the development of the much-needed novel anti-protozoal drugs.


Asunto(s)
Carbamatos/farmacología , Criptosporidiosis , Cryptosporidium parvum , Toxoplasma , Cryptosporidium , Humanos , Urea
16.
J Parasit Dis ; 44(1): 221-229, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32174728

RESUMEN

Apigenin-7-O-glucoside, a flavonoid glucoside known to inhibit cancer cell growth, fungi growth, both intra and extracellular reactive oxygen species generation, causing cell arrest and damage to the plasma membrane, was tested alone or in combination with a dihydrofolate inhibitor (pyrimethamine) against Toxoplasma gondii (T. gondii) growth. The anti-T. gondii activity was carried out using a high throughput antiparasitic drug screening cell-based assay known as 2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H tetrazolium, monosodium salt (WST-8) and fluorescence plate reader. The 50% effective concentration inhibition and 95% confidence interval values for individual and combination treatments against T. gondii were 0.80 (0.38-1.29) µg/mL, 1.05 (0.275-2.029) µg/mL, and 0.40 (0-1.06) µg/mL for apigenin-7-O-glucoside, pyrimethamine, and apigenin-7-O-glucoside plus pyrimethamine, respectively. Interestingly, the apigenin-7-O-glucoside plus pyrimethamine combination showed an additive inhibition effect against T. gondii growth in vitro using the fractional inhibitory concentration index method. It was discovered that the apigenin-7-O-glucoside combination with pyrimethamine had a high selectivity index 62.5, which implies 62-fold inhibition activity against the parasite versus human foreskin fibroblast cell cytotoxicity. This new combination hit is novel and will have the potential for future effective, safe, and less costly anti-Toxoplasma drug development, if its in vivo activity shows similar findings.

17.
Methods Mol Biol ; 2052: 351-372, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31452172

RESUMEN

Cryptosporidium parvum has a complex life cycle consisting of asexual and sexual phases that culminate in oocyst formation in vivo. The most widely used cell culture platforms to study C. parvum only support a few days of growth and do not allow the parasite to proceed past the sexual stages to complete oocyst formation. Additionally, these cell culture platforms are mostly adenocarcinoma cell lines, which do not adequately model the parasite's natural environment in the small intestine. We describe here a method to create primary intestinal epithelial cell monolayers that support long-term C. parvum growth. Monolayers were derived from mouse intestinal stem cells grown as spheroids and plated onto transwells, allowing for separate apical and basolateral compartments. In the apical chamber, the cell growth medium was removed to create an "air-liquid interface" that enhanced host cell differentiation and supported long-term C. parvum growth. The use of primary intestinal cells to grow C. parvum in vitro will be a valuable tool for studying host-parasite interactions using a convenient in vitro model that more closely resembles the natural niche in the intestine.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Cryptosporidium parvum/crecimiento & desarrollo , Células Epiteliales/parasitología , Interacciones Huésped-Parásitos/genética , Mucosa Intestinal/parasitología , Oocistos/crecimiento & desarrollo , Animales , Técnicas de Cultivo de Célula/instrumentación , Cryptosporidium parvum/genética , Cryptosporidium parvum/patogenicidad , Mucosa Intestinal/citología , Mucosa Intestinal/diagnóstico por imagen , Ratones , Microscopía Fluorescente , Células 3T3 NIH , Oocistos/aislamiento & purificación , Reacción en Cadena de la Polimerasa , Esferoides Celulares/citología , Células Madre/citología , Flujo de Trabajo
18.
BMC Res Notes ; 12(1): 688, 2019 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-31651353

RESUMEN

OBJECTIVE: Toxoplasma gondii, an intracellular zoonotic parasite, infects approximately a third of the world population. Current drugs for treatment of T. gondii infection have been challenged with ineffectiveness and adverse side effects. This necessitates development of new anti-Toxoplasma drugs. Sorghum bicolor [Moench] leaf extract has been used in African traditional medicine for the management of anemia and treatment of infectious diseases. We tested the in vitro anti-Toxoplasma inhibitory activity of S. bicolor's oil-like crude extracts and fractions against T. gondii and determined their cytotoxic effects on human host cells. RESULTS: Significant inhibitory activities against the growth of T. gondii tachyzoites were observed for the crude extract (IC50 = 3.65 µg/mL), the hexane-methanol fraction (IC50 = 2.74 µg/mL), and the hexane fraction (IC50 = 3.55 µg/mL) after 48 h of culture. The minimum cytotoxicity concentrations against HFF were 34.41, 16.92 and 7.23 µg/mL for crude extract, hexane-methanol and hexane fractions, respectively. The crude extract and fractions showed high antiparasitic effects with low cytotoxic effects. Further studies to determine synergistic activities and modes of action would provide impetus for the development of new toxoplasmosis drugs or nutraceuticals.


Asunto(s)
Antiprotozoarios/farmacología , Lípidos/química , Extractos Vegetales/farmacología , Hojas de la Planta/química , Sorghum/química , Toxoplasma/efectos de los fármacos , Antiprotozoarios/química , Antiprotozoarios/aislamiento & purificación , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Prepucio/citología , Hexanos/química , Humanos , Masculino , Metanol/química , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Toxoplasma/fisiología , Toxoplasmosis/tratamiento farmacológico , Toxoplasmosis/parasitología , Toxoplasmosis/prevención & control
19.
PLoS Pathog ; 15(7): e1007953, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31356619

RESUMEN

Cryptosporidium parvum is a highly prevalent zoonotic and anthroponotic protozoan parasite that causes a diarrheal syndrome in children and neonatal livestock, culminating in growth retardation and mortalities. Despite the high prevalence of C. parvum, there are no fully effective and safe drugs for treating infections, and there is no vaccine. We have previously reported that the bacterial-like C. parvum lactate dehydrogenase (CpLDH) enzyme is essential for survival, virulence and growth of C. parvum in vitro and in vivo. In the present study, we screened compound libraries and identified inhibitors against the enzymatic activity of recombinant CpLDH protein in vitro. We tested the inhibitors for anti-Cryptosporidium effect using in vitro infection assays of HCT-8 cells monolayers and identified compounds NSC158011 and NSC10447 that inhibited the proliferation of intracellular C. parvum in vitro, with IC50 values of 14.88 and 72.65 µM, respectively. At doses tolerable in mice, we found that both NSC158011 and NSC10447 consistently significantly reduced the shedding of C. parvum oocysts in infected immunocompromised mice's feces, and prevented intestinal villous atrophy as well as mucosal erosion due to C. parvum. Together, our findings have unveiled promising anti-Cryptosporidium drug candidates that can be explored further for the development of the much needed novel therapeutic agents against C. parvum infections.


Asunto(s)
Antiprotozoarios/farmacología , Cryptosporidium parvum/efectos de los fármacos , Cryptosporidium parvum/enzimología , Inhibidores Enzimáticos/farmacología , L-Lactato Deshidrogenasa/antagonistas & inhibidores , Proteínas Protozoarias/antagonistas & inhibidores , Animales , Línea Celular , Criptosporidiosis/tratamiento farmacológico , Criptosporidiosis/parasitología , Criptosporidiosis/patología , Cryptosporidium parvum/patogenicidad , Interacciones Huésped-Parásitos/efectos de los fármacos , Humanos , L-Lactato Deshidrogenasa/química , L-Lactato Deshidrogenasa/genética , Ratones , Ratones Noqueados , Simulación del Acoplamiento Molecular , Pruebas de Sensibilidad Parasitaria , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
20.
Cell Host Microbe ; 26(1): 123-134.e8, 2019 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-31231046

RESUMEN

Despite being a frequent cause of severe diarrheal disease in infants and an opportunistic infection in immunocompromised patients, Cryptosporidium research has lagged due to a lack of facile experimental methods. Here, we describe a platform for complete life cycle development and long-term growth of C. parvum in vitro using "air-liquid interface" (ALI) cultures derived from intestinal epithelial stem cells. Transcriptomic profiling revealed that differentiating epithelial cells grown under ALI conditions undergo profound changes in metabolism and development that enable completion of the parasite life cycle in vitro. ALI cultures support parasite expansion > 100-fold and generate viable oocysts that are transmissible in vitro and to mice, causing infection and animal death. Transgenic parasite lines created using CRISPR/Cas9 were used to complete a genetic cross in vitro, demonstrating Mendelian segregation of chromosomes during meiosis. ALI culture provides an accessible model that will enable innovative studies into Cryptosporidium biology and host interactions.


Asunto(s)
Criptosporidiosis/patología , Criptosporidiosis/parasitología , Cryptosporidium/patogenicidad , Células Epiteliales/parasitología , Interacciones Huésped-Patógeno , Modelos Teóricos , Animales , Células Cultivadas , Cryptosporidium/crecimiento & desarrollo , Genética Microbiana/métodos , Ratones Endogámicos C57BL , Técnicas Microbiológicas/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...