Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 197
Filtrar
1.
Br J Cancer ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38942989

RESUMEN

BACKGROUND: Certain paediatric nervous system malignancies have dismal prognoses. Retinoic acid (RA) is used in neuroblastoma treatment, and preclinical data indicate potential benefit in selected paediatric brain tumour entities. However, limited single-agent efficacy necessitates combination treatment approaches. METHODS: We performed drug sensitivity profiling of 76 clinically relevant drugs in combination with RA in 16 models (including patient-derived tumouroids) of the most common paediatric nervous system tumours. Drug responses were assessed by viability assays, high-content imaging, and apoptosis assays and RA relevant pathways by RNAseq from treated models and patient samples obtained through the precision oncology programme INFORM (n = 2288). Immunoprecipitation detected BCL-2 family interactions, and zebrafish embryo xenografts were used for in vivo efficacy testing. RESULTS: Group 3 medulloblastoma (MBG3) and neuroblastoma models were highly sensitive to RA treatment. RA induced differentiation and regulated apoptotic genes. RNAseq analysis revealed high expression of BCL2L1 in MBG3 and BCL2 in neuroblastomas. Co-treatments with RA and BCL-2/XL inhibitor navitoclax synergistically decreased viability at clinically achievable concentrations. The combination of RA with navitoclax disrupted the binding of BIM to BCL-XL in MBG3 and to BCL-2 in neuroblastoma, inducing apoptosis in vitro and in vivo. CONCLUSIONS: RA treatment primes MBG3 and NB cells for apoptosis, triggered by navitoclax cotreatment.

2.
Acta Neuropathol Commun ; 12(1): 101, 2024 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-38902810

RESUMEN

Within the past decade, incremental integration of molecular characteristics into the classification of central nervous system neoplasms increasingly facilitated precise diagnosis and advanced stratification, beyond potentially providing the foundation for advanced targeted therapies. We report a series of three cases of infant-type hemispheric glioma (IHG) involving three infants diagnosed with neuroepithelial tumors of the cerebral hemispheres harboring a novel, recurrent TRIM24::MET fusion. Histopathology showed glial tumors with either low-grade or high-grade characteristics, while molecular characterization found an additional homozygous CDKN2A/B deletion in two cases. Two patients showed leptomeningeal dissemination, while multiple supra- and infratentorial tumor manifestations were found in one case. Following subtotal resection (two cases) and biopsy (one case), treatment intensity of adjuvant chemotherapy regimens did not reflect in the progression patterns within the reported cases. Two patients showed progression after first-line treatment, of which one patient died not responding to tyrosine kinase inhibitor cabozantinib. As the detection of a recurrent TRIM24::MET fusion expands the spectrum of renowned driving fusion genes in IHG, this comparative illustration may indicate a distinct clinico-pathological heterogeneity of tumors bearing this driver alteration. Upfront clinical trials of IHG promoting further characterization and the implementation of individualized therapies involving receptor tyrosine kinase inhibition are required.


Asunto(s)
Neoplasias Encefálicas , Glioma , Proteínas Proto-Oncogénicas c-met , Humanos , Proteínas Proto-Oncogénicas c-met/genética , Glioma/genética , Glioma/patología , Masculino , Femenino , Lactante , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Proteínas de Fusión Oncogénica/genética , Proteínas Portadoras/genética
3.
Cancer Med ; 13(12): e7417, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38923198

RESUMEN

INTRODUCTION: Neurosurgery is considered the mainstay of treatment for pediatric low-grade glioma (LGG); the extent of resection determines subsequent stratification in current treatment protocols. Yet, surgical radicality must be balanced against the risks of complications that may affect long-term quality of life. We investigated whether this consideration impacted surgical resection patterns over time for patients of the German LGG studies. PATIENTS AND METHODS: Four thousand two hundred and seventy pediatric patients from three successive LGG studies (median age at diagnosis 7.6 years, neurofibromatosis (NF1) 14.7%) were grouped into 5 consecutive time intervals (TI1-5) for date of diagnosis and analyzed for timing and extent of first surgery with respect to tumor site, histology, NF1-status, sex, and age. RESULTS: The fraction of radiological LGG diagnoses increased over time (TI1 12.6%; TI5 21.7%), while the extent of the first neurosurgical intervention (3440/4270) showed a reduced fraction of complete/subtotal and an increase of partial resections from TI1 to TI5. Binary logistic regression analysis for the first intervention within the first year following diagnosis confirmed the temporal trends (p < 0.001) and the link with tumor site for each extent of resection (p < 0.001). Higher age is related to more complete resections in the cerebellum and cerebral hemispheres. CONCLUSIONS: The declining extent of surgical resections over time was unrelated to patient characteristics. It paralleled the evolution of comprehensive treatment algorithms; thus, it may reflect alignment of surgical practice to recommendations in respect to age, tumor site, and NF1-status integrated as such into current treatment guidelines. Further investigations are needed to understand how planning, performance, or tumor characteristics impact achieving surgical goals.


Asunto(s)
Neoplasias Encefálicas , Glioma , Procedimientos Neuroquirúrgicos , Humanos , Niño , Glioma/cirugía , Glioma/patología , Femenino , Masculino , Procedimientos Neuroquirúrgicos/métodos , Alemania , Neoplasias Encefálicas/cirugía , Neoplasias Encefálicas/patología , Adolescente , Preescolar , Lactante , Clasificación del Tumor
4.
Neuro Oncol ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38743009

RESUMEN

Pediatric low-grade glioma (pLGG) is the most common childhood brain tumor group. The natural history, when curative resection is not possible, is one of a chronic disease with periods of tumor stability and episodes of tumor progression. While there is a high overall survival rate, many patients experience significant and potentially lifelong morbidities. The majority of pLGGs have an underlying activation of the RAS/MAPK pathway due to mutational events, leading to the use of molecularly targeted therapies in clinical trials, with recent regulatory approval for the combination of BRAF and MEK inhibition for BRAFV600E mutated pLGG. Despite encouraging activity, tumor regrowth can occur during therapy due to drug resistance, off treatment as tumor recurrence, or as reported in some patients as a rapid rebound growth within 3 months of discontinuing targeted therapy. Definitions of these patterns of regrowth have not been well described in pLGG. For this reason, the International Pediatric Low-Grade Glioma Coalition, a global group of physicians and scientists, formed the Resistance, Rebound, and Recurrence (R3) working group to study resistance, rebound, and recurrence. A modified Delphi approach was undertaken to produce consensus-based definitions and recommendations for regrowth patterns in pLGG with specific reference to targeted therapies.

5.
J Neurooncol ; 168(2): 317-332, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38630384

RESUMEN

INTRODUCTION: Patients with pediatric low-grade gliomas (pLGGs), the most common primary brain tumors in children, can often benefit from MAPK inhibitor (MAPKi) treatment. However, rapid tumor regrowth, also referred to as rebound growth, may occur once treatment is stopped, constituting a significant clinical challenge. METHODS: Four patient-derived pediatric glioma models were investigated to model rebound growth in vitro based on viable cell counts in response to MAPKi treatment and withdrawal. A multi-omics dataset (RNA sequencing and LC-MS/MS based phospho-/proteomics) was generated to investigate possible rebound-driving mechanisms. Following in vitro validation, putative rebound-driving mechanisms were validated in vivo using the BT-40 orthotopic xenograft model. RESULTS: Of the tested models, only a BRAFV600E-driven model (BT-40, with additional CDKN2A/Bdel) showed rebound growth upon MAPKi withdrawal. Using this model, we identified a rapid reactivation of the MAPK pathway upon MAPKi withdrawal in vitro, also confirmed in vivo. Furthermore, transient overactivation of key MAPK molecules at transcriptional (e.g. FOS) and phosphorylation (e.g. pMEK) levels, was observed in vitro. Additionally, we detected increased expression and secretion of cytokines (CCL2, CX3CL1, CXCL10 and CCL7) upon MAPKi treatment, maintained during early withdrawal. While increased cytokine expression did not have tumor cell intrinsic effects, presence of these cytokines in conditioned media led to increased attraction of microglia cells in vitro. CONCLUSION: Taken together, these data indicate rapid MAPK reactivation upon MAPKi withdrawal as a tumor cell intrinsic rebound-driving mechanism. Furthermore, increased secretion of microglia-recruiting cytokines may play a role in treatment response and rebound growth upon withdrawal, warranting further evaluation.


Asunto(s)
Neoplasias Encefálicas , Citocinas , Glioma , Microglía , Mutación , Inhibidores de Proteínas Quinasas , Proteínas Proto-Oncogénicas B-raf , Humanos , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Microglía/metabolismo , Microglía/efectos de los fármacos , Glioma/metabolismo , Glioma/tratamiento farmacológico , Glioma/patología , Glioma/genética , Citocinas/metabolismo , Animales , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/genética , Inhibidores de Proteínas Quinasas/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto , Niño , Ratones , Proliferación Celular/efectos de los fármacos , Línea Celular Tumoral , Sistema de Señalización de MAP Quinasas/efectos de los fármacos
7.
J Neurooncol ; 166(1): 99-112, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38184819

RESUMEN

PURPOSE: Patients with MYC-amplified Group 3 medulloblastoma (MB) (subtype II) show poor progression-free survival rates. Class I histone deacetylase inhibitors (HDACi) are highly effective for the treatment of MYC-amplified MB in vitro and in vivo. Drug combination regimens including class I HDACi may represent an urgently needed novel treatment approach for this high risk disease. METHODS: A medium-throughput in vitro combination drug screen was performed in three MYC-amplified and one non-MYC-amplified MB cell line testing 75 clinically relevant drugs alone and in combination with entinostat. The drug sensitivity score (DSS) was calculated based on metabolic inhibition quantified by CellTiter-Glo. The six top synergistic combination hits were evaluated in a 5 × 5 combination matrix and a seven-ray design. Synergy was validated and characterized by cell counts, caspase-3-like-activity and poly-(ADP-ribose)-polymerase-(PARP)-cleavage. On-target activity of drugs was validated by immunoprecipitation and western blot. BCL-XL dependency of the observed effect was explored with siRNA mediated knockdown of BCL2L1, and selective inhibition with targeted compounds (A-1331852, A-1155463). RESULTS: 20/75 drugs effectively reduced metabolic activity in combination with entinostat in all three MYC-amplified cell lines (DSS ≥ 10). The combination entinostat and navitoclax showed the strongest synergistic interaction across all MYC-amplified cell lines. siRNA mediated knockdown of BCL2L1, as well as targeted inhibition with selective inhibitors showed BCL-XL dependency of the observed effect. Increased cell death was associated with increased caspase-3-like-activity. CONCLUSION: Our study identifies the combination of class I HDACi and BCL-XL inhibitors as a potential new approach for the treatment of MYC-amplified MB cells.


Asunto(s)
Benzamidas , Neoplasias Cerebelosas , Meduloblastoma , Piridinas , Humanos , Apoptosis , Caspasa 3/metabolismo , Línea Celular Tumoral , Neoplasias Cerebelosas/tratamiento farmacológico , Neoplasias Cerebelosas/genética , Combinación de Medicamentos , Interacciones Farmacológicas , Inhibidores de Histona Desacetilasas/farmacología , Meduloblastoma/tratamiento farmacológico , Meduloblastoma/genética , Meduloblastoma/metabolismo , ARN Interferente Pequeño
8.
BMC Cancer ; 24(1): 147, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38291372

RESUMEN

BACKGROUND: Pediatric low-grade glioma (pLGG) is essentially a single pathway disease, with most tumors driven by genomic alterations affecting the mitogen-activated protein kinase/ERK (MAPK) pathway, predominantly KIAA1549::BRAF fusions and BRAF V600E mutations. This makes pLGG an ideal candidate for MAPK pathway-targeted treatments. The type I BRAF inhibitor, dabrafenib, in combination with the MEK inhibitor, trametinib, has been approved by the United States Food and Drug Administration for the systemic treatment of BRAF V600E-mutated pLGG. However, this combination is not approved for the treatment of patients with tumors harboring BRAF fusions as type I RAF inhibitors are ineffective in this setting and may paradoxically enhance tumor growth. The type II RAF inhibitor, tovorafenib (formerly DAY101, TAK-580, MLN2480), has shown promising activity and good tolerability in patients with BRAF-altered pLGG in the phase 2 FIREFLY-1 study, with an objective response rate (ORR) per Response Assessment in Neuro-Oncology high-grade glioma (RANO-HGG) criteria of 67%. Tumor response was independent of histologic subtype, BRAF alteration type (fusion vs. mutation), number of prior lines of therapy, and prior MAPK-pathway inhibitor use. METHODS: LOGGIC/FIREFLY-2 is a two-arm, randomized, open-label, multicenter, global, phase 3 trial to evaluate the efficacy, safety, and tolerability of tovorafenib monotherapy vs. current standard of care (SoC) chemotherapy in patients < 25 years of age with pLGG harboring an activating RAF alteration who require first-line systemic therapy. Patients are randomized 1:1 to either tovorafenib, administered once weekly at 420 mg/m2 (not to exceed 600 mg), or investigator's choice of prespecified SoC chemotherapy regimens. The primary objective is to compare ORR between the two treatment arms, as assessed by independent review per RANO-LGG criteria. Secondary objectives include comparisons of progression-free survival, duration of response, safety, neurologic function, and clinical benefit rate. DISCUSSION: The promising tovorafenib activity data, CNS-penetration properties, strong scientific rationale combined with the manageable tolerability and safety profile seen in patients with pLGG led to the SIOPe-BTG-LGG working group to nominate tovorafenib for comparison with SoC chemotherapy in this first-line phase 3 trial. The efficacy, safety, and functional response data generated from the trial may define a new SoC treatment for newly diagnosed pLGG. TRIAL REGISTRATION: ClinicalTrials.gov: NCT05566795. Registered on October 4, 2022.


Asunto(s)
Luciérnagas , Glioma , Animales , Niño , Humanos , Adulto Joven , Luciérnagas/metabolismo , Proteínas Proto-Oncogénicas B-raf , Glioma/tratamiento farmacológico , Glioma/genética , Glioma/metabolismo , Resultado del Tratamiento , Mutación , Proteínas Quinasas Activadas por Mitógenos , Oximas , Piridonas , Pirimidinonas/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico
9.
Nat Med ; 30(1): 207-217, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37978284

RESUMEN

BRAF genomic alterations are the most common oncogenic drivers in pediatric low-grade glioma (pLGG). Arm 1 (n = 77) of the ongoing phase 2 FIREFLY-1 (PNOC026) trial investigated the efficacy of the oral, selective, central nervous system-penetrant, type II RAF inhibitor tovorafenib (420 mg m-2 once weekly; 600 mg maximum) in patients with BRAF-altered, relapsed/refractory pLGG. Arm 2 (n = 60) is an extension cohort, which provided treatment access for patients with RAF-altered pLGG after arm 1 closure. Based on independent review, according to Response Assessment in Neuro-Oncology High-Grade Glioma (RANO-HGG) criteria, the overall response rate (ORR) of 67% met the arm 1 prespecified primary endpoint; median duration of response (DOR) was 16.6 months; and median time to response (TTR) was 3.0 months (secondary endpoints). Other select arm 1 secondary endpoints included ORR, DOR and TTR as assessed by Response Assessment in Pediatric Neuro-Oncology Low-Grade Glioma (RAPNO) criteria and safety (assessed in all treated patients and the primary endpoint for arm 2, n = 137). The ORR according to RAPNO criteria (including minor responses) was 51%; median DOR was 13.8 months; and median TTR was 5.3 months. The most common treatment-related adverse events (TRAEs) were hair color changes (76%), elevated creatine phosphokinase (56%) and anemia (49%). Grade ≥3 TRAEs occurred in 42% of patients. Nine (7%) patients had TRAEs leading to discontinuation of tovorafenib. These data indicate that tovorafenib could be an effective therapy for BRAF-altered, relapsed/refractory pLGG. ClinicalTrials.gov registration: NCT04775485 .


Asunto(s)
Luciérnagas , Glioma , Humanos , Niño , Animales , Proteínas Proto-Oncogénicas B-raf/genética , Glioma/tratamiento farmacológico , Glioma/genética
11.
Neuro Oncol ; 26(1): 25-37, 2024 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-37944912

RESUMEN

The most common childhood central nervous system (CNS) tumor is pediatric low-grade glioma (pLGG), representing 30%-40% of all CNS tumors in children. Although there is high associated morbidity, tumor-related mortality is relatively rare. pLGG is now conceptualized as a chronic disease, underscoring the importance of functional outcomes and quality-of-life measures. A wealth of data has emerged about these tumors, including a better understanding of their natural history and their molecular drivers, paving the way for the use of targeted inhibitors. While these treatments have heralded tremendous promise, challenges remain about how to best optimize their use, and the long-term toxicities associated with these inhibitors remain unknown. The International Pediatric Low-Grade Glioma Coalition (iPLGGc) is a global group of physicians and scientists with expertise in pLGG focused on addressing key pLGG issues. Here, the iPLGGc provides an overview of the current state-of-the-art in pLGG, including epidemiology, histology, molecular landscape, treatment paradigms, survival outcomes, functional outcomes, imaging response, and ongoing challenges. This paper also serves as an introduction to 3 other pLGG manuscripts on (1) pLGG preclinical models, (2) consensus framework for conducting early-phase clinical trials in pLGG, and (3) pLGG resistance, rebound, and recurrence.


Asunto(s)
Neoplasias Encefálicas , Glioma , Niño , Humanos , Neoplasias Encefálicas/epidemiología , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/patología , Glioma/terapia , Glioma/tratamiento farmacológico , Proteínas Proto-Oncogénicas B-raf
12.
Neuro Oncol ; 26(3): 407-416, 2024 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-38146999

RESUMEN

Within the last few decades, we have witnessed tremendous advancements in the study of pediatric low-grade gliomas (pLGG), leading to a much-improved understanding of their molecular underpinnings. Consequently, we have achieved successful milestones in developing and implementing targeted therapeutic agents for treating these tumors. However, the community continues to face many unknowns when it comes to the most effective clinical implementation of these novel targeted inhibitors or combinations thereof. Questions encompassing optimal dosing strategies, treatment duration, methods for assessing clinical efficacy, and the identification of predictive biomarkers remain unresolved. Here, we offer the consensus of the international pLGG coalition (iPLGGc) clinical trial working group on these important topics and comment on clinical trial design and endpoint rationale. Throughout, we seek to standardize the global approach to early clinical trials (phase I and II) for pLGG, leading to more consistently interpretable results as well as enhancing the pace of novel therapy development and encouraging an increased focus on functional endpoints as well and quality of life for children faced with this disease.


Asunto(s)
Antineoplásicos , Neoplasias Encefálicas , Glioma , Adolescente , Niño , Humanos , Adulto Joven , Antineoplásicos/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Consenso , Glioma/tratamiento farmacológico , Glioma/patología , Calidad de Vida , Resultado del Tratamiento , Ensayos Clínicos Fase I como Asunto , Ensayos Clínicos Fase II como Asunto , Guías de Práctica Clínica como Asunto
13.
J Neurooncol ; 165(3): 467-478, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37999877

RESUMEN

PURPOSE: Although pediatric low-grade gliomas (pLGG) are the most common pediatric brain tumors, patient-derived cell lines reflecting pLGG biology in culture are scarce. This also applies to the most common pLGG subtype pilocytic astrocytoma (PA). Conventional cell culture approaches adapted from higher-grade tumors fail in PA due to oncogene-induced senescence (OIS) driving tumor cells into arrest. Here, we describe a PA modeling workflow using the Simian Virus large T antigen (SV40-TAg) to circumvent OIS. METHODS: 18 pLGG tissue samples (17 (94%) histological and/or molecular diagnosis PA) were mechanically dissociated. Tumor cell positive-selection using A2B5 was perfomed in 8/18 (44%) cases. All primary cell suspensions were seeded in Neural Stem Cell Medium (NSM) and Astrocyte Basal Medium (ABM). Resulting short-term cultures were infected with SV40-TAg lentivirus. Detection of tumor specific alterations (BRAF-duplication and BRAF V600E-mutation) by digital droplet PCR (ddPCR) at defined time points allowed for determination of tumor cell fraction (TCF) and evaluation of the workflow. DNA-methylation profiling and gene-panel sequencing were used for molecular profiling of primary samples. RESULTS: Primary cell suspensions had a mean TCF of 55% (+/- 23% (SD)). No sample in NSM (0/18) and ten samples in ABM (10/18) were successfully transduced. Three of these ten (30%) converted into long-term pLGG cell lines (TCF 100%), while TCF declined to 0% (outgrowth of microenvironmental cells) in 7/10 (70%) cultures. Young patient age was associated with successful model establishment. CONCLUSION: A subset of primary PA cultures can be converted into long-term cell lines using SV40-TAg depending on sample intrinsic (patient age) and extrinsic workflow-related (e.g. type of medium, successful transduction) parameters. Careful monitoring of sample-intrinsic and extrinsic factors optimizes the process.


Asunto(s)
Astrocitoma , Neoplasias Encefálicas , Glioma , Niño , Humanos , Proteínas Proto-Oncogénicas B-raf/genética , Flujo de Trabajo , Astrocitoma/patología , Glioma/patología , Neoplasias Encefálicas/patología
14.
J Neurooncol ; 164(3): 617-632, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37783879

RESUMEN

PURPOSE: MYC-driven Group 3 medulloblastoma (MB) (subtype II) is a highly aggressive childhood brain tumor. Sensitivity of MYC-driven MB to class I histone deacetylase inhibitors (HDACi) has been previously demonstrated in vitro and in vivo. In this study we characterize the transcriptional effects of class I HDACi in MYC-driven MB and explore beneficial drug combinations. METHODS: MYC-amplified Group 3 MB cells (HD-MB03) were treated with class I HDACi entinostat. Changes in the gene expression profile were quantified on a microarray. Bioinformatic assessment led to the identification of pathways affected by entinostat treatment. Five drugs interfering with these pathways (olaparib, idasanutlin, ribociclib, selinexor, vinblastine) were tested for synergy with entinostat in WST-8 metabolic activity assays in a 5 × 5 combination matrix design. Synergy was validated in cell count and flow cytometry experiments. The effect of entinostat and olaparib on DNA damage was evaluated by γH2A.X quantification in immunoblotting, fluorescence microscopy and flow cytometry. RESULTS: Entinostat treatment changed the expression of genes involved in 22 pathways, including downregulation of DNA damage response. The PARP1 inhibitors olaparib and pamiparib showed synergy with entinostat selectively in MYC-amplified MB cells, leading to increased cell death, decreased viability and increased formation of double strand breaks, as well as increased sensitivity to additional induction of DNA damage by doxorubicin. Non-MYC-amplified MB cells and normal human fibroblasts were not susceptible to this triple treatment. CONCLUSION: Our study identifies the combination of entinostat with olaparib as a new potential therapeutic approach for MYC-driven Group 3 MB.


Asunto(s)
Neoplasias Cerebelosas , Meduloblastoma , Humanos , Niño , Meduloblastoma/tratamiento farmacológico , Meduloblastoma/genética , Meduloblastoma/metabolismo , Inhibidores de Histona Desacetilasas/farmacología , Neoplasias Cerebelosas/tratamiento farmacológico , Neoplasias Cerebelosas/genética , Daño del ADN , Línea Celular Tumoral
15.
N Engl J Med ; 389(12): 1108-1120, 2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37733309

RESUMEN

BACKGROUND: Detection of the BRAF V600E mutation in pediatric low-grade glioma has been associated with a lower response to standard chemotherapy. In previous trials, dabrafenib (both as monotherapy and in combination with trametinib) has shown efficacy in recurrent pediatric low-grade glioma with BRAF V600 mutations, findings that warrant further evaluation of this combination as first-line therapy. METHODS: In this phase 2 trial, patients with pediatric low-grade glioma with BRAF V600 mutations who were scheduled to receive first-line therapy were randomly assigned in a 2:1 ratio to receive dabrafenib plus trametinib or standard chemotherapy (carboplatin plus vincristine). The primary outcome was the independently assessed overall response (complete or partial response) according to the Response Assessment in Neuro-Oncology criteria. Also assessed were the clinical benefit (complete or partial response or stable disease for ≥24 weeks) and progression-free survival. RESULTS: A total of 110 patients underwent randomization (73 to receive dabrafenib plus trametinib and 37 to receive standard chemotherapy). At a median follow-up of 18.9 months, an overall response occurred in 47% of the patients treated with dabrafenib plus trametinib and in 11% of those treated with chemotherapy (risk ratio, 4.31; 95% confidence interval [CI], 1.7 to 11.2; P<0.001). Clinical benefit was observed in 86% of the patients receiving dabrafenib plus trametinib and in 46% receiving chemotherapy (risk ratio, 1.88; 95% CI, 1.3 to 2.7). The median progression-free survival was significantly longer with dabrafenib plus trametinib than with chemotherapy (20.1 months vs. 7.4 months; hazard ratio, 0.31; 95% CI, 0.17 to 0.55; P<0.001). Grade 3 or higher adverse events occurred in 47% of the patients receiving dabrafenib plus trametinib and in 94% of those receiving chemotherapy. CONCLUSIONS: Among pediatric patients with low-grade glioma with BRAF V600 mutations, dabrafenib plus trametinib resulted in significantly more responses, longer progression-free survival, and a better safety profile than standard chemotherapy as first-line therapy. (Funded by Novartis; ClinicalTrials.gov number, NCT02684058.).


Asunto(s)
Antineoplásicos , Glioma , Proteínas Proto-Oncogénicas B-raf , Niño , Humanos , Glioma/tratamiento farmacológico , Glioma/genética , Mutación , Proteínas Proto-Oncogénicas B-raf/genética , Antineoplásicos/uso terapéutico
16.
Neuro Oncol ; 25(11): 1920-1931, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37738646

RESUMEN

Pediatric low-grade gliomas (pLGGs) are the most common brain tumor in young children. While they are typically associated with good overall survival, children with these central nervous system tumors often experience chronic tumor- and therapy-related morbidities. Moreover, individuals with unresectable tumors frequently have multiple recurrences and persistent neurological symptoms. Deep molecular analyses of pLGGs reveal that they are caused by genetic alterations that converge on a single mitogenic pathway (MEK/ERK), but their growth is heavily influenced by nonneoplastic cells (neurons, T cells, microglia) in their local microenvironment. The interplay between neoplastic cell MEK/ERK pathway activation and stromal cell support necessitates the use of predictive preclinical models to identify the most promising drug candidates for clinical evaluation. As part of a series of white papers focused on pLGGs, we discuss the current status of preclinical pLGG modeling, with the goal of improving clinical translation for children with these common brain tumors.


Asunto(s)
Neoplasias Encefálicas , Glioma , Niño , Humanos , Preescolar , Glioma/patología , Neoplasias Encefálicas/patología , Mutación , Sistema de Señalización de MAP Quinasas , Quinasas de Proteína Quinasa Activadas por Mitógenos , Microambiente Tumoral
18.
J Clin Oncol ; 41(33): 5174-5183, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37643378

RESUMEN

PURPOSE: BRAF V600 mutation is detected in 5%-10% of pediatric high-grade gliomas (pHGGs), and effective treatments are limited. In previous trials, dabrafenib as monotherapy or in combination with trametinib demonstrated activity in children and adults with relapsed/refractory BRAF V600-mutant HGG. METHODS: This phase II study evaluated dabrafenib plus trametinib in patients with relapsed/refractory BRAF V600-mutant pHGG. The primary objective was overall response rate (ORR) by independent review by Response Assessment in Neuro-Oncology criteria. Secondary objectives included ORR by investigator determination, duration of response (DOR), progression-free survival, overall survival (OS), and safety. RESULTS: A total of 41 pediatric patients with previously treated BRAF V600-mutant HGG were enrolled. At primary analysis, median follow-up was 25.1 months, and 51% of patients remained on treatment. Sixteen of 20 discontinuations were due to progressive disease in this relapsed/refractory pHGG population. Independently assessed ORR was 56% (95% CI, 40 to 72). Median DOR was 22.2 months (95% CI, 7.6 months to not reached [NR]). Fourteen deaths were reported. Median OS was 32.8 months (95% CI, 19.2 months to NR). The most common all-cause adverse events (AEs) were pyrexia (51%), headache (34%), and dry skin (32%). Two patients (5%) had AEs (both rash) leading to discontinuation. CONCLUSION: In relapsed/refractory BRAF V600-mutant pHGG, dabrafenib plus trametinib improved ORR versus previous trials of chemotherapy in molecularly unselected patients with pHGG and was associated with durable responses and encouraging survival. These findings suggest that dabrafenib plus trametinib is a promising targeted therapy option for children and adolescents with relapsed/refractory BRAF V600-mutant HGG.


Asunto(s)
Glioma , Melanoma , Adulto , Adolescente , Humanos , Niño , Melanoma/tratamiento farmacológico , Melanoma/genética , Proteínas Proto-Oncogénicas B-raf/genética , Oximas , Piridonas , Pirimidinonas , Glioma/tratamiento farmacológico , Glioma/genética , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Mutación
19.
Lancet Oncol ; 24(8): 925-935, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37541273

RESUMEN

BACKGROUND: FGFR alterations are reported across various malignancies and might act as oncogenic drivers in multiple histologies. Erdafitinib is an oral, selective pan-FGFR tyrosine kinase inhibitor with activity in FGFR-altered advanced urothelial carcinoma. We aimed to evaluate the safety and activity of erdafitinib in previously treated patients with FGFR-altered advanced solid tumours. METHODS: The single-arm, phase 2 RAGNAR study was conducted at 156 investigative centres (hospitals or oncology practices that are qualified oncology study centres) across 15 countries. The study consisted of four cohorts based on tumour histology and patient age; the results reported in this Article are for the primary cohort of the study, defined as the Broad Panel Cohort, which was histology-agnostic. We recruited patients aged 12 years or older with advanced or metastatic tumours of any histology (except urothelial cancer) with predefined FGFR1-4 alterations (mutations or fusions according to local or central testing). Eligible patients had disease progression on at least one previous line of systemic therapy and no alternative standard therapy available to them, and an Eastern Cooperative Oncology Group performance status of 0-1 (or equivalent for adolescents aged 12-17 years). Patients received once-daily oral erdafitinib (8 mg/day with provision for pharmacodynamically guided up-titration to 9 mg/day) on a continuous 21-day cycle until disease progression or intolerable toxicity. The primary endpoint was objective response rate by independent review committee according to Response Evaluation Criteria In Solid Tumors (RECIST), version 1.1, or Response Assessment In Neuro-Oncology (RANO). The primary analysis was conducted on the treated population of the Broad Panel Cohort. This ongoing study is registered with ClinicalTrials.gov, number NCT04083976. FINDINGS: Patients were recruited between Dec 5, 2019, and Feb 15, 2022. Of 217 patients treated with erdafitinib, 97 (45%) patients were female and 120 (55%) were male. The data cutoff was Aug 15, 2022. At a median follow-up of 17·9 months (IQR 13·6-23·9), an objective response was observed in 64 (30% [95% CI 24-36]) of 217 patients across 16 distinct tumour types. The most common grade 3 or higher treatment-emergent adverse events related to erdafitinib were stomatitis (25 [12%]), palmar-plantar erythrodysaesthesia syndrome (12 [6%]), and hyperphosphataemia (11 [5%]). The most commonly occurring serious treatment-related adverse events (grade 3 or higher) were stomatitis in four (2%) patients and diarrhoea in two (1%). There were no treatment-related deaths. INTERPRETATION: RAGNAR results show clinical benefit for erdafitinib in the tumour-agnostic setting in patients with advanced solid tumours with susceptible FGFR alterations who have exhausted other treatment options. These results support the continued development of FGFR inhibitors in patients with advanced solid tumours. FUNDING: Janssen Research & Development.


Asunto(s)
Carcinoma de Células Transicionales , Neoplasias de la Vejiga Urinaria , Adolescente , Humanos , Masculino , Femenino , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Pirazoles/efectos adversos , Inhibidores de Proteínas Quinasas/efectos adversos , Progresión de la Enfermedad
20.
Clin Pharmacol Ther ; 114(4): 904-913, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37441736

RESUMEN

Novel drug treatments for pediatric patients with cancer are urgently needed. Success of drug development in pediatric oncology has been promising, but many drugs still fail in translation from preclinical to clinical phases. To increase the translational potential, several improvements have been implemented, including the use of clinically achievable concentrations in the drug testing phase. Although pharmacokinetic (PK) parameters of numerous investigated drugs are published, a comprehensive PK overview of the most common drugs in pediatric oncology could guide preclinical trial design and improve the translatability into clinical trials. A review of the literature was conducted for PK parameters of 74 anticancer drugs, from the drug sensitivity profiling library of the INdividualized Therapy FOr Relapsed Malignancies in Childhood (INFORM) registry. PK data in the pediatric population were reported and complemented by adult parameters when no pediatric data were available. In addition, blood-brain barrier (BBB)-penetration assessment of drugs was provided by using the BBB score. Maximum plasma concentration was available for 73 (97%), area under the plasma concentration-time curve for 69 (92%), plasma protein binding for 66 (88%), plasma half-life for 57 (76%), time to maximum concentration for 54 (72%), clearance for 52 (69%), volume of distribution for 37 (49%), lowest plasma concentration reached by the drug before the next dose administration for 21 (28%), and steady-state concentration for 4 (5%) of drugs. Pediatric PK data were available for 48 (65%) drugs. We provide a comprehensive review of PK data for 74 drugs studied in pediatric oncology. This data set can serve as a reference to design experiments more closely mimicking drug PK conditions in patients, and may thereby increase the probability of successful clinical translation.


Asunto(s)
Antineoplásicos , Carcinoma , Adulto , Humanos , Niño , Recurrencia Local de Neoplasia , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacocinética , Investigación , Oncología Médica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...