RESUMEN
Microglia are highly dynamic cells and their migration and colonization of the brain parenchyma is a crucial step for proper brain development and function. Externally developing zebrafish embryos possess optical transparency, which along with well-characterized transgenic reporter lines that fluorescently label microglia, make zebrafish an ideal vertebrate model for such studies. In this paper, we take advantage of the unique features of the zebrafish model to visualize the dynamics of microglia cells in vivo and under physiological conditions. We use confocal microscopy to record a timelapse of microglia cells in the optic tectum of the zebrafish embryo and then, extract tracking data using the IMARIS 10.0 software to obtain the cells' migration path, mean speed, and distribution in the optic tectum at different developmental stages. This protocol can be a useful tool to elucidate the physiological significance of microglia behavior in various contexts, contributing to a deeper characterization of these highly motile cells.
Asunto(s)
Microglía , Microscopía Confocal , Pez Cebra , Animales , Pez Cebra/embriología , Microglía/citología , Microscopía Confocal/métodos , Movimiento Celular/fisiología , Colículos Superiores/citología , Colículos Superiores/fisiología , Embrión no Mamífero/citologíaRESUMEN
Tissue macrophages are essential components of the immune system that also play key roles in vertebrate development and homeostasis, including in zebrafish, which has gained popularity over the years as a translational model for human disease. Commonly, zebrafish macrophages are identified based on expression of fluorescent transgenic reporters, allowing for real-time imaging in living animals. Several of these lines have also proven instrumental to isolate pure populations of macrophages in the developing embryo and larvae using fluorescence-activated cell sorting (FACS). However, the identification of tissue macrophages in adult fish is not as clear, and robust protocols are needed that would take into account changes in reporter specificity as well as the heterogeneity of mononuclear phagocytes as fish reach adulthood. In this chapter, we describe the methodology for analyzing macrophages in various tissues in the adult zebrafish by flow cytometry. Coupled with FACS, these protocols further allow for the prospective isolation of enriched populations of tissue-specific mononuclear phagocytes that can be used in downstream transcriptomic and/or epigenomic analyses. Overall, we aim at providing a guide for the zebrafish community based on our expertise investigating the adult mononuclear phagocyte system.
Asunto(s)
Macrófagos , Pez Cebra , Adulto , Animales , Humanos , Sistema Mononuclear Fagocítico , Animales Modificados Genéticamente , ColorantesRESUMEN
The Super-Conserved Receptors Expressed in the Brain (SREBs) form a subfamily of orphan G protein-coupled receptors, highly conserved in evolution and characterized by a predominant expression in the brain. The signaling pathways activated by these receptors (if any) are presently unclear. Given the strong conservation of their intracellular loops, we used a BioID2 proximity-labeling assay to identify protein partners of SREBs that would interact with these conserved domains. Using streptavidin pull-down followed by mass spectrometry analysis, we identified the amino acid transporter SLC3A2, the AKAP protein LRBA, and the 4.1 protein EPB41L2 as potential interactors of these GPCRs. Using co-immunoprecipitation experiments, we confirmed the physical association of these proteins with the receptors. We then studied the functional relevance of the interaction between EPB41L2 and SREB1. Immunofluorescence microscopy revealed that SREB1 and EPB41L2 co-localize at the plasma membrane and that SREB1 is enriched in the ß-catenin-positive cell membranes. siRNA knockdown experiments revealed that EPB41L2 promotes the localization of SREB1 at the plasma membrane and increases the solubilization of SREB1 when using detergents, suggesting a modification of its membrane microenvironment. Altogether, these data suggest that EPB41L2 could regulate the subcellular compartmentalization of SREBs and, as proposed for other GPCRs, could affect their stability or activation.
Asunto(s)
Proteínas Portadoras , Proteínas del Citoesqueleto , Proteínas Portadoras/metabolismo , Proteínas del Citoesqueleto/metabolismo , Encéfalo/metabolismo , Membrana Celular/metabolismoRESUMEN
BACKGROUND: Two decades ago, the fish-specific monoclonal antibody 4C4 was found to be highly reactive to zebrafish microglia, the macrophages of the central nervous system. This has resulted in 4C4 being widely used, in combination with available fluorescent transgenic reporters to identify and isolate microglia. However, the target protein of 4C4 remains unidentified, which represents a major caveat. In addition, whether the 4C4 expression pattern is strictly restricted to microglial cells in zebrafish has never been investigated. RESULTS: Having demonstrated that 4C4 is able to capture its native antigen from adult brain lysates, we used immunoprecipitation/mass-spectrometry, coupled to recombinant expression analyses, to identify its target. The cognate antigen was found to be a paralog of Galectin 3 binding protein (Lgals3bpb), known as MAC2-binding protein in mammals. Notably, 4C4 did not recognize other paralogs, demonstrating specificity. Moreover, our data show that Lgals3bpb expression, while ubiquitous in microglia, also identifies leukocytes in the periphery, including populations of gut and liver macrophages. CONCLUSIONS: The 4C4 monoclonal antibody recognizes Lgals3bpb, a predicted highly glycosylated protein whose function in the microglial lineage is currently unknown. Identification of Lgals3bpb as a new pan-microglia marker will be fundamental in forthcoming studies using the zebrafish model.
Asunto(s)
Anticuerpos Monoclonales , Microglía , Animales , Microglía/metabolismo , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/metabolismo , Pez Cebra , Galectina 3/metabolismo , Macrófagos/metabolismo , MamíferosRESUMEN
The liver is the largest solid organ in the body, yet it remains incompletely characterized. Here we present a spatial proteogenomic atlas of the healthy and obese human and murine liver combining single-cell CITE-seq, single-nuclei sequencing, spatial transcriptomics, and spatial proteomics. By integrating these multi-omic datasets, we provide validated strategies to reliably discriminate and localize all hepatic cells, including a population of lipid-associated macrophages (LAMs) at the bile ducts. We then align this atlas across seven species, revealing the conserved program of bona fide Kupffer cells and LAMs. We also uncover the respective spatially resolved cellular niches of these macrophages and the microenvironmental circuits driving their unique transcriptomic identities. We demonstrate that LAMs are induced by local lipid exposure, leading to their induction in steatotic regions of the murine and human liver, while Kupffer cell development crucially depends on their cross-talk with hepatic stellate cells via the evolutionarily conserved ALK1-BMP9/10 axis.
Asunto(s)
Evolución Biológica , Hepatocitos/metabolismo , Macrófagos/metabolismo , Proteogenómica , Animales , Núcleo Celular/metabolismo , Hígado Graso/genética , Hígado Graso/patología , Homeostasis , Humanos , Macrófagos del Hígado/metabolismo , Antígenos Comunes de Leucocito/metabolismo , Lípidos/química , Hígado/metabolismo , Linfocitos/metabolismo , Ratones Endogámicos C57BL , Modelos Biológicos , Células Mieloides/metabolismo , Obesidad/patología , Proteoma/metabolismo , Transducción de Señal , Transcriptoma/genéticaRESUMEN
Chemerin is a multifunctional protein initially characterized in our laboratory as a chemoattractant factor for leukocyte populations. Its main functional receptor is CMKLR1. We identified previously chemerin as an anti-tumoral factor inhibiting the vascularization of tumor grafts. We show here that overexpression of bioactive chemerin in mice results in a reduction of the density of the retinal vascular network during its development and in adults. Chemerin did not affect vascular sprouting during the post-natal development of the network, but rather promoted endothelial cell apoptosis and vessel pruning. This phenotype was reversed to normal in CMKLR1-deficient mice, demonstrating the role of this receptor. Chemerin inhibited also neoangiogenesis in a model of pathological proliferative retinopathy, and in response to hind-limb ischemia. Mechanistically, PTEN and FOXO1 antagonists could almost completely restore the density of the retinal vasculature, suggesting the involvement of the PI3-kinase/AKT pathway in the chemerin-induced vessel regression process.
Asunto(s)
Quimiocinas , Péptidos y Proteínas de Señalización Intercelular , Animales , Apoptosis , Quimiocinas/metabolismo , Hipoxia , Péptidos y Proteínas de Señalización Intercelular/genética , RatonesRESUMEN
CCRL2 belongs to the G protein-coupled receptor family and is one of the three chemerin receptors. It is considered as a non-signaling receptor, presenting chemerin to cells expressing the functional chemerin receptor ChemR23/CMKLR1 and possibly GPR1. In the present work, we investigate the role played by CCRL2 in mouse cancer models. Loss of function of Ccrl2 accelerated the development of papillomas in a chemical model of skin carcinogenesis (DMBA/TPA), whereas the growth of B16 and LLC tumor cell grafts was delayed. Delayed tumor growth was also observed when B16 and LLC cells overexpress CCRL2, while knockout of Ccrl2 in tumor cells reversed the consequences of Ccrl2 knockout in the host. The phenotypes associated with CCRL2 gain or loss of function were largely abrogated by knocking out the chemerin or Cmklr1 genes. Cells harboring CCRL2 could concentrate bioactive chemerin and promote the activation of CMKLR1-expressing cells. A reduction of neoangiogenesis was observed in tumor grafts expressing CCRL2, mimicking the phenotype of chemerin-expressing tumors. This study demonstrates that CCRL2 shares functional similarities with the family of atypical chemokine receptors (ACKRs). Its expression by tumor cells can significantly tune the effects of the chemerin/CMKLR1 system and act as a negative regulator of tumorigenesis.
RESUMEN
Chemerin, a multifunctional protein acting through the receptor ChemR23/CMKLR1, is downregulated in various human tumors and was shown to display antitumoral properties in mouse models of cancer. In the present study, we report that bioactive chemerin expression by tumor cells delays the growth of B16 melanoma and Lewis lung carcinoma in vivo. A similar delay is observed when chemerin is not expressed by tumor cells but by keratinocytes of the host mice. The protective effect of chemerin is mediated by CMKLR1 and appears unrelated to the recruitment of leukocyte populations. Rather, tumors grown in the presence of chemerin display a much smaller number of blood vessels, hypoxic regions early in their development, and larger necrotic areas. These observations likely explain the slower growth of the tumors. The anti-angiogenic effects of chemerin were confirmed in a bead sprouting assay using human umbilical vein endothelial cells. These results suggest that CMKLR1 agonists might constitute therapeutic molecules inhibiting the neoangiogenesis process in solid tumors.
RESUMEN
In vertebrates, the ontogeny of microglia, the resident macrophages of the central nervous system, initiates early during development from primitive macrophages. Although murine embryonic microglia then persist through life, in zebrafish these cells are transient, as they are fully replaced by an adult population originating from larval hematopoietic stem cell (HSC)-derived progenitors. Colony-stimulating factor 1 receptor (Csf1r) is a fundamental regulator of microglia ontogeny in vertebrates, including zebrafish, which possess two paralogous genes: csf1ra and csf1rb Although previous work has shown that mutation in both genes completely abrogates microglia development, the specific contribution of each paralog remains largely unknown. Here, using a fate-mapping strategy to discriminate between the two microglial waves, we uncover non-overlapping roles for csf1ra and csf1rb in hematopoiesis, and identified csf1rb as an essential regulator of adult microglia development. Notably, we demonstrate that csf1rb positively regulates HSC-derived myelopoiesis, resulting in macrophage deficiency, including microglia, in adult mutant animals. Overall, this study contributes to new insights into evolutionary aspects of Csf1r signaling and provides an unprecedented framework for the functional dissection of embryonic versus adult microglia in vivo.
Asunto(s)
Microglía/metabolismo , Mutación/genética , Proteínas Tirosina Quinasas/genética , Proteínas de Pez Cebra/genética , Pez Cebra/genética , Envejecimiento/genética , Animales , Embrión no Mamífero/metabolismo , Desarrollo Embrionario , Regulación del Desarrollo de la Expresión Génica , Hematopoyesis , Células Madre Hematopoyéticas/metabolismo , Macrófagos/metabolismo , Células Mieloides/metabolismo , Fagocitos/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Proteínas Tirosina Quinasas Receptoras/genética , Proteínas Tirosina Quinasas Receptoras/metabolismo , Pez Cebra/embriología , Proteínas de Pez Cebra/metabolismoRESUMEN
[This corrects the article DOI: 10.3389/fonc.2019.01253.].
RESUMEN
Macrophages derive from multiple sources of hematopoietic progenitors. Most macrophages require colony-stimulating factor 1 receptor (CSF1R), but some macrophages persist in the absence of CSF1R. Here, we analyzed mpeg1:GFP-expressing macrophages in csf1r-deficient zebrafish and report that embryonic macrophages emerge followed by their developmental arrest. In larvae, mpeg1+ cell numbers then increased showing two distinct types in the skin: branched, putative Langerhans cells, and amoeboid cells. In contrast, although numbers also increased in csf1r-mutants, exclusively amoeboid mpeg1+ cells were present, which we showed by genetic lineage tracing to have a non-hematopoietic origin. They expressed macrophage-associated genes, but also showed decreased phagocytic gene expression and increased epithelial-associated gene expression, characteristic of metaphocytes, recently discovered ectoderm-derived cells. We further demonstrated that juvenile csf1r-deficient zebrafish exhibit systemic macrophage depletion. Thus, csf1r deficiency disrupts embryonic to adult macrophage development. Zebrafish deficient for csf1r are viable and permit analyzing the consequences of macrophage loss throughout life.
Immune cells called macrophages are found in all organs in the body. These cells are highly effective at eating and digesting large particles including dead cells and debris, and microorganisms such as bacteria. Macrophages are also instrumental in shaping developing organs and repairing tissues during life. Macrophages were, until recently, thought to be constantly replenished from cells circulating in the bloodstream. However, it turns out that separate populations of macrophages become established in most tissues during embryonic development and are maintained throughout life without further input. Previous studies of zebrafish, rodents and humans have shown that, when a gene called CSF1R is non-functional, macrophages are absent from many organs including the brain. However, some tissue-specific macrophages still persist, and it was not clear why these cells do not rely on the CSF1R gene while others do. Kuil et al. set out to decipher the precise requirement for the CSF1R gene in macrophage development in living zebrafish. The experiments used zebrafish that make a green fluorescent protein in their macrophages. As these fish are transparent, this meant that Kuil et al. could observe the cells within the living fish and isolate them to determine which genes are switched on and off. This approach revealed that zebrafish with a mutated version of the CSF1R gene make macrophages as embryos but that these cells then fail to multiply and migrate into the developing organs. This results in fewer macrophages in the zebrafish's tissues, and an absence of these cells in the brain. Kuil et al. went on to show that new macrophages did emerge in zebrafish that were about two to three weeks old. However, unexpectedly, these new cells were not regular macrophages. Instead, they were a new recently identified cell-type called metaphocytes, which share similarities with macrophages but have a completely different origin, move faster and do not eat particles. Zebrafish lacking the CSF1R gene thus lose nearly all their macrophages but retain metaphocytes. These macrophage-free mutant zebrafish constitute an unprecedented tool for further studies looking to discriminate the different roles of macrophages and metaphocytes.
Asunto(s)
Macrófagos/fisiología , Microglía/fisiología , Proteínas Tirosina Quinasas/metabolismo , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/fisiología , Proteínas de Pez Cebra/fisiología , Animales , Proliferación Celular , Perfilación de la Expresión Génica , Macrófagos/metabolismo , Microglía/metabolismo , Proteínas Tirosina Quinasas Receptoras , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Pez Cebra/embriología , Proteínas de Pez Cebra/metabolismoRESUMEN
In most vertebrates, the yolk sac (YS) represents the very first tissue where blood cells are detected. Therefore, it was thought for a long time that it generated all the blood cells present in the embryo. This model was challenged using different animal models, and we now know that YS hematopoietic precursors are mostly transient although their contribution to the adult system cannot be excluded. In this review, we aim at properly define the different waves of blood progenitors that are produced by the YS and address the fate of each of them. Indeed, in the last decade, many evidences have emphasized the role of the YS in the emergence of several myeloid tissue-resident adult subsets. We will focus on the development of microglia, the resident macrophages in the central nervous system, and try to untangle the recent controversy about their origin.
Asunto(s)
Hematopoyesis/fisiología , Células Madre Hematopoyéticas/fisiología , Saco Vitelino/fisiología , Animales , Humanos , Macrófagos/fisiología , Microglía/fisiología , Células Mieloides/fisiologíaRESUMEN
The mononuclear phagocytic system consists of many cells, in particular macrophages, scattered throughout the body. However, there is increasing evidence for the heterogeneity of tissue-resident macrophages, leading to a pressing need for new tools to discriminate mononuclear phagocytic system subsets from other hematopoietic lineages. Macrophage-expressed gene (Mpeg)1.1 is an evolutionary conserved gene encoding perforin-2, a pore-forming protein associated with host defense against pathogens. Zebrafish mpeg1.1:GFP and mpeg1.1:mCherry reporters were originally established to specifically label macrophages. Since then more than 100 peer-reviewed publications have made use of mpeg1.1-driven transgenics for in vivo studies, providing new insights into key aspects of macrophage ontogeny, activation, and function. Whereas the macrophage-specific expression pattern of the mpeg1.1 promoter has been firmly established in the zebrafish embryo, it is currently not known whether this specificity is maintained through adulthood. Here we report direct evidence that beside macrophages, a subpopulation of B-lymphocytes is marked by mpeg1.1 reporters in most adult zebrafish organs. These mpeg1.1+ lymphoid cells endogenously express mpeg1.1 and can be separated from mpeg1.1+ macrophages by virtue of their light-scatter characteristics using FACS. Remarkably, our analyses also revealed that B-lymphocytes, rather than mononuclear phagocytes, constitute the main mpeg1.1-positive population in irf8null myeloid-defective mutants, which were previously reported to recover tissue-resident macrophages in adulthood. One notable exception is skin macrophages, whose development and maintenance appear to be independent from irf8, similar to mammals. Collectively, our findings demonstrate that irf8 functions in myelopoiesis are evolutionary conserved and highlight the need for alternative macrophage-specific markers to study the mononuclear phagocytic system in adult zebrafish.
Asunto(s)
Linfocitos B/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/genética , Animales , Linfocitos B/citología , Regulación de la Expresión Génica , Factores Reguladores del Interferón/metabolismo , Macrófagos/metabolismo , Proteínas de la Membrana/genética , Células Mieloides/metabolismo , Fagocitosis , Análisis de la Célula Individual , Piel/citología , Piel/metabolismo , Distribución Tisular , Transgenes , Proteínas de Pez Cebra/genéticaRESUMEN
Chemerin is a multifunctional protein acting mainly through the G protein-coupled receptor ChemR23/CMKLR1/Chemerin1. Its expression is frequently downregulated in human tumors, including in melanoma and squamous cell carcinoma of the skin and anti-tumoral properties of chemerin were reported in mouse tumor graft models. In the present study, we report the development of spontaneous skin tumors in aged ChemR23-deficient mice. In order to test the potential therapeutic benefit of chemerin analogs, a transgenic model in which bioactive chemerin is over-expressed by basal keratinocytes was generated. These animals are characterized by increased levels of chemerin immunoreactivity and bioactivity in the skin and the circulation. In a chemical carcinogenesis model, papillomas developed later, were less numerous, and their progression to carcinomas was delayed. Temporal control of chemerin expression by doxycycline allowed to attribute its effects to late stages of carcinogenesis. The protective effects of chemerin were partly abrogated by ChemR23 invalidation. These results demonstrate that chemerin is able to delay very significantly tumor progression in a model that recapitulates closely the evolution of solid cancer types in human and suggest that the chemerin-ChemR23 system might constitute an interesting target for therapeutic intervention in the cancer field.
RESUMEN
Microglia, the tissue-resident macrophages of the CNS, represent major targets for therapeutic intervention in a wide variety of neurological disorders. Efficient reprogramming protocols to generate microglia-like cells in vitro using patient-derived induced pluripotent stem cells will, however, require a precise understanding of the cellular and molecular events that instruct microglial cell fates. This remains a challenge since the developmental origin of microglia during embryogenesis is controversial. Here, using genetic tracing in zebrafish, we uncover primitive macrophages as the unique source of embryonic microglia. We also demonstrate that this initial population is transient, with primitive microglia later replaced by definitive microglia that persist throughout adulthood. The adult wave originates from cmyb-dependent hematopoietic stem cells. Collectively, our work challenges the prevailing model establishing erythro-myeloid progenitors as the sole and direct microglial precursor and provides further support for the existence of multiple waves of microglia, which originate from distinct hematopoietic precursors.
Asunto(s)
Embrión no Mamífero/citología , Macrófagos/citología , Microglía/metabolismo , Proteínas Proto-Oncogénicas c-myb/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Desarrollo Embrionario , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Cinética , Macrófagos/metabolismoRESUMEN
Teleost fish are among the most ancient vertebrates possessing an adaptive immune system with B and T lymphocytes that produce memory responses to pathogens. Most bony fish, however, have only 2 types of B lymphocytes, in contrast to the 4 types available to mammals. To better understand the evolution of adaptive immunity, we generated transgenic zebrafish in which the major immunoglobulin M (IgM(+)) B-cell subset expresses green fluorescence protein (GFP) (IgM1:eGFP). We discovered that the earliest IgM(+) B cells appear between the dorsal aorta and posterior cardinal vein and also in the kidney around 20 days postfertilization. We also examined B-cell ontogeny in adult IgM1:eGFP;rag2:DsRed animals, where we defined pro-B, pre-B, and immature/mature B cells in the adult kidney. Sites of B-cell development that shift between the embryo and adult have previously been described in birds and mammals. Our results suggest that this developmental shift occurs in all jawed vertebrates. Finally, we used IgM1:eGFP and cd45DsRed;blimp1:eGFP zebrafish to characterize plasma B cells and investigate B-cell function. The IgM1:eGFP reporter fish are the first nonmammalian B-cell reporter animals to be described. They will be important for further investigation of immune cell evolution and development and host-pathogen interactions in zebrafish.
Asunto(s)
Linfocitos B/citología , Evolución Molecular , Pez Cebra/embriología , Pez Cebra/inmunología , Inmunidad Adaptativa , Animales , Animales Modificados Genéticamente , Linfocitos B/metabolismo , Genes Reporteros , Proteínas Fluorescentes Verdes/metabolismo , Sistema Inmunológico/embriología , Inmunoglobulina M/metabolismo , Activación de Linfocitos , FagocitosisRESUMEN
The novel immune-type receptors (NITRs), which have been described in numerous bony fish species, are encoded by multigene families of inhibitory and activating receptors and are predicted to be functional orthologs to the mammalian natural killer cell receptors (NKRs). Within the zebrafish NITR family, nitr9 is the only gene predicted to encode an activating receptor. However, alternative RNA splicing generates three distinct nitr9 transcripts, each of which encodes a different isoform. Although nitr9 transcripts have been detected in zebrafish lymphocytes, the specific hematopoietic lineage(s) that expresses Nitr9 remains to be determined. In an effort to better understand the role of NITRs in zebrafish immunity, anti-Nitr9 monoclonal antibodies were generated and evaluated for the ability to recognize the three Nitr9 isoforms. The application of these antibodies to flow cytometry should prove to be useful for identifying the specific lymphocyte lineages that express Nitr9 and may permit the isolation of Nitr9-expressing cells that can be directly assessed for cytotoxic (e.g., NK) function.
RESUMEN
Chemerin was isolated as the natural ligand of the G protein-coupled receptor ChemR23. Chemerin acts as a chemotactic factor for leukocyte populations expressing ChemR23, particularly immature plasmacytoid dendritic cells, but also immature myeloid DCs, macrophages and natural killer cells. Chemerin is expressed by epithelial and non-epithelial cells as an inactive precursor, present at nanomolar concentrations in plasma. Processing of the precursor C-terminus is required for generating bioactive forms of chemerin. Various proteases mediate this processing, including neutrophil serine proteases and proteases from coagulation and fibrinolytic cascades. ChemR23-expressing cells are recruited in human inflammatory diseases, such as psoriasis and lupus. In animal models, both pro-inflammatory and anti-inflammatory roles of chemerin have been reported. Recently, two other receptors for chemerin were described, GPR1 and CCRL2, but their functional relevance is largely unknown. Both chemerin and ChemR23 are also expressed by adipocytes, and the emerging role of chemerin as an adipokine regulating lipid and carbohydrate metabolism is an area of intense research.
Asunto(s)
Quimiocinas/inmunología , Receptores de Quimiocina/inmunología , Secuencia de Aminoácidos , Animales , Quimiocinas/química , Quimiocinas/metabolismo , Quimiotaxis de Leucocito/inmunología , Inflamación/inmunología , Péptidos y Proteínas de Señalización Intercelular , Oligopéptidos/inmunología , Receptores de Quimiocina/metabolismoRESUMEN
The evolutionarily conserved immune system of the zebrafish (Danio rerio), in combination with its genetic tractability, position it as an excellent model system in which to elucidate the origin and function of vertebrate immune cells. We recently reported the existence of antigen-presenting mononuclear phagocytes in zebrafish, namely macrophages and dendritic cells (DCs), but have been impaired in further characterizing the biology of these cells by the lack of a specific transgenic reporter line. Using regulatory elements of a class II major histocompatibility gene, we generated a zebrafish reporter line expressing green fluorescent protein (GFP) in all APCs, macrophages, DCs, and B lymphocytes. Examination of mhc2dab:GFP; cd45:DsRed double-transgenic animals demonstrated that kidney mhc2dab:GFP(hi); cd45:DsRed(hi) cells were exclusively mature monocytes/macrophages and DCs, as revealed by morphologic and molecular analyses. Mononuclear phagocytes were found in all hematolymphoid organs, but were most abundant in the intestine and spleen, where they up-regulate the expression of inflammatory cytokines upon bacterial challenge. Finally, mhc2dab:GFP and cd45:DsRed transgenes mark mutually exclusive cell subsets in the lymphoid fraction, enabling the delineation of the major hematopoietic lineages in the adult zebrafish. These findings suggest that mhc2dab:GFP and cd45:DsRed transgenic lines will be instrumental in elucidating the immune response in the zebrafish.
Asunto(s)
Sistema Mononuclear Fagocítico/inmunología , Pez Cebra/inmunología , Animales , Animales Modificados Genéticamente , Linaje de la Célula , Citocinas/metabolismo , Células Dendríticas/citología , Células Dendríticas/metabolismo , Regulación del Desarrollo de la Expresión Génica , Genes Reporteros , Antígenos de Histocompatibilidad Clase II/genética , Antígenos de Histocompatibilidad Clase II/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Macrófagos/citología , Macrófagos/inmunología , Macrófagos/metabolismo , Modelos Biológicos , Imagen Molecular , Monocitos/citología , Monocitos/inmunología , Monocitos/metabolismo , Sistema Mononuclear Fagocítico/citología , Sistema Mononuclear Fagocítico/metabolismo , Especificidad de Órganos , Secuencias Reguladoras de Ácidos Nucleicos , Imagen de Cuerpo Entero , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismoRESUMEN
Novel immune-type receptors (NITRs) are encoded by large multi-gene families and share structural and signaling similarities to mammalian natural killer receptors (NKRs). NITRs have been identified in multiple bony fish species, including zebrafish, and may be restricted to this large taxonomic group. Thirty-nine NITR genes that can be classified into 14 families are encoded on zebrafish chromosomes 7 and 14. Herein, we demonstrate the expression of multiple NITR genes in the zebrafish ovary and during embryogenesis. All 14 families of zebrafish NITRs are expressed in hematopoietic kidney, spleen and intestine as are immunoglobulin and T cell antigen receptors. Furthermore, all 14 families of NITRs are shown to be expressed in the lymphocyte lineage, but not in the myeloid lineage, consistent with the hypothesis that NITRs function as NKRs. Sequence analyses of NITR amplicons identify known alleles and reveal additional alleles within the nitr1, nitr2, nitr3, and nitr5 families, reflecting the recent evolution of this gene family.