Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Tree Physiol ; 25(11): 1399-408, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16105807

RESUMEN

A high-density plantation of three genotypes of Populus was exposed to an elevated concentration of carbon dioxide ([CO(2)]; 550 micromol mol(-1)) from planting through canopy closure using a free-air CO(2) enrichment (FACE) technique. The FACE treatment stimulated gross primary productivity by 22 and 11% in the second and third years, respectively. Partitioning of extra carbon (C) among C pools of different turnover rates is of critical interest; thus, we calculated net ecosystem productivity (NEP) to determine whether elevated atmospheric [CO(2)] will enhance net plantation C storage capacity. Free-air CO(2) enrichment increased net primary productivity (NPP) of all genotypes by 21% in the second year and by 26% in the third year, mainly because of an increase in the size of C pools with relatively slow turnover rates (i.e., wood). In all genotypes in the FACE treatment, more new soil C was added to the total soil C pool compared with the control treatment. However, more old soil C loss was observed in the FACE treatment compared with the control treatment, possibly due to a priming effect from newly incorporated root litter. FACE did not significantly increase NEP, probably as a result of this priming effect.


Asunto(s)
Populus/fisiología , Árboles/fisiología , Biomasa , Dióxido de Carbono , Raíces de Plantas/fisiología , Suelo
2.
Glob Chang Biol ; 11(12): 2177-2195, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34991284

RESUMEN

Polar forests once extended across the high-latitude landmasses during ice-free 'greenhouse' intervals in Earth history. In the Cretaceous 'greenhouse' world, Arctic conifer forests were considered predominantly deciduous, while those on Antarctica contained a significantly greater proportion of evergreens. To investigate the causes of this distinctive biogeographical pattern, we developed a coupled model of conifer growth, soil biogeochemistry and forest dynamics. Our approach emphasized general relationships between leaf lifespan (LL) and function, and incorporated the feedback of LL on soil nutrient status. The model was forced with a mid-Cretaceous 'greenhouse' climate simulated by the Hadley Centre GCM. Simulated polar forests contained mixtures of dominant LLs, which reproduced observed biogeographical patterns of deciduous, mixed and evergreen biomes. It emerged that disturbance by fire was a critical factor. Frequent fires in simulated Arctic ecosystems promoted the dominance of trees with short LLs that were characterized by the rapid growth and colonization rates typical of today's boreal pioneer species. In Antarctica, however, infrequent fires allowed trees with longer LLs to dominate because they attained greater height, despite slower growth rates. A direct test of the approach was successfully achieved by comparing modelled LLs with quantitative estimates using Cretaceous fossil woods from Svalbard in the European Arctic and Alexander Island, Antarctica. Observations and the model both revealed mixed Arctic and evergreen Antarctic communities with peak dominance of trees with the same LLs. Our study represents a significant departure from the long-held belief that leaf habit was an adaptation to warm, dark winter climates, and highlights a previously unrecognized role for disturbance (in whatever guise) in polar forest ecology.

3.
New Phytol ; 159(3): 609-621, 2003 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33873598

RESUMEN

• Using the Poplar Free Air CO2 Enrichement (PopFACE) facility we investigated the effects of elevated [CO2 ] on the diurnal and growth cycle responses of photosynthesis and conductance in three poplar species. • In situ diurnal measurements of photosynthesis were made on Populus alba, P. nigra and P. ×euramericana and, in parallel, in vivo maximum capacity for carboxylation (Vc,max ) and maximum rates of electron transport (Jmax ) were determined by gas exchange measurement. • Light saturated (Asat ) and daily integrated (A') photosynthesis increased at elevated [CO2 ] in all species. Elevated [CO2 ] decreased Vc,max and Jmax for P. nigra and Jmax for P.¥euramericana but had no effect on stomatal conductance in any of the species throughout the first growth cycle. During post-coppice re-growth, elevated [CO2 ] did not increase Asat in P. nigra and P.×euramericana due to large decreases in Vc,max and Jmax . • A 50% increase in [CO2 ] under these open-air field conditions resulted in a large and sustained increase in Asat . Although there were some differences between the species, these had little effect on photosynthetic rates at the growth [CO2 ]. Nevertheless the results show that even fast growing trees grown without rooting volume restriction in the open may still show some down-regulation of photosynthetic potential at elevated [CO2 ].

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...