Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Mater Chem A Mater ; 10(26): 13884-13894, 2022 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-35872702

RESUMEN

Two-dimensional (2D) anatase titanium dioxide (TiO2) is expected to exhibit different properties as compared to anatase nanocrystallites, due to its highly reactive exposed facets. However, access to 2D anatase TiO2 is limited by the non-layered nature of the bulk crystal, which does not allow use of top-down chemical exfoliation. Large efforts have been dedicated to the growth of 2D anatase TiO2 with high reactive facets by bottom-up approaches, which relies on the use of harmful chemical reagents. Here, we demonstrate a novel fluorine-free strategy based on topochemical conversion of 2D 1T-TiS2 for the production of single crystalline 2D anatase TiO2, exposing the {001} facet on the top and bottom and {100} at the sides of the nanosheet. The exposure of these faces, with no additional defects or doping, gives rise to a significant activity enhancement in the hydrogen evolution reaction, as compared to commercially available Degussa P25 TiO2 nanoparticles. Because of the strong potential of TiO2 in many energy-based applications, our topochemical approach offers a low cost, green and mass scalable route for production of highly crystalline anatase TiO2 with well controlled and highly reactive exposed facets.

2.
ACS Nano ; 13(1): 54-60, 2019 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-30452230

RESUMEN

A well-defined insulating layer is of primary importance in the fabrication of passive ( e.g., capacitors) and active ( e.g., transistors) components in integrated circuits. One of the most widely known two-dimensional (2D) dielectric materials is hexagonal boron nitride (hBN). Solution-based techniques are cost-effective and allow simple methods to be used for device fabrication. In particular, inkjet printing is a low-cost, noncontact approach, which also allows for device design flexibility, produces no material wastage, and offers compatibility with almost any surface of interest, including flexible substrates. In this work, we use water-based and biocompatible graphene and hBN inks to fabricate all-2D material and inkjet-printed capacitors. We demonstrate an areal capacitance of 2.0 ± 0.3 nF cm-2 for a dielectric thickness of ∼3 µm and negligible leakage currents, averaged across more than 100 devices. This gives rise to a derived dielectric constant of 6.1 ± 1.7. The inkjet printed hBN dielectric has a breakdown field of 1.9 ± 0.3 MV cm-1. Fully printed capacitors with sub-micrometer hBN layer thicknesses have also been demonstrated. The capacitors are then exploited in two fully printed demonstrators: a resistor-capacitor (RC) low-pass filter and a graphene-based field effect transistor.

3.
Nat Nanotechnol ; 11(12): 1020-1025, 2016 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-27920439

RESUMEN

Fuel cells are the zero-emission automotive power source that best preserves the advantages of gasoline automobiles: low upfront cost, long driving range and fast refuelling. To make fuel-cell cars a reality, the US Department of Energy has set a fuel cell system cost target of US$30 kW-1 in the long-term, which equates to US$2,400 per vehicle, excluding several major powertrain components (in comparison, a basic, but complete, internal combustion engine system costs approximately US$3,000). To date, most research for automotive applications has focused on proton exchange membrane fuel cells (PEMFCs), because these systems have demonstrated the highest power density. Recently, however, an alternative technology, hydroxide exchange membrane fuel cells (HEMFCs), has gained significant attention, because of the possibility to use stable platinum-group-metal-free catalysts, with inherent, long-term cost advantages. In this Perspective, we discuss the cost profile of PEMFCs and the advantages offered by HEMFCs. In particular, we discuss catalyst development needs for HEMFCs and set catalyst activity targets to achieve performance parity with state-of-the-art automotive PEMFCs. Meeting these targets requires careful optimization of nanostructures to pack high surface areas into a small volume, while maintaining high area-specific activity and favourable pore-transport properties.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...