RESUMEN
BACKGROUND AND AIMS: Microvascular dysfunction underlies many cardiovascular disease conditions; little is known regarding its presence in individuals with high levels of lipoprotein(a) [Lp(a)]. The aim of the present study was to determine the frequency of microvascular dysfunction among such subjects with and without concomitant familial hypercholesterolemia (FH). METHODS: Four groups of asymptomatic individuals aged 30-59 years, without manifest cardiovascular disease, were recruited (n = 30 per group): controls with Lp(a) < 30 nmol/L, mutation-confirmed FH with Lp(a) < 30 nmol/L, or >125 nmol/L, and individuals with isolated Lp(a) > 125 nmol/L. Participants underwent evaluation of myocardial microvascular function by measuring coronary flow reserve (CFR) using transthoracic Doppler echocardiography, and of peripheral microvascular endothelial function by peripheral arterial tonometry. RESULTS: The groups were balanced in age, sex, and body mass index. Each of the three dyslipoproteinaemic groups had a greater proportion of individuals with impaired coronary flow reserve, 30%, compared to 6.7% of controls (p = 0.014). The median CFR levels did not differ significantly between the four groups, however. Cholesterol-lowering treatment time was longer in the individuals with normal than in those with impaired CFR in the FH + Lp(a) > 125 group (p = 0.023), but not in the group with FH + Lp(a) < 30 (p = 0.468). There was no difference in peripheral endothelial function between the groups. CONCLUSIONS: Coronary microvascular dysfunction is more prevalent in asymptomatic individuals with isolated Lp(a) elevation and in heterozygous FH both with and without high Lp(a) compared to healthy controls. Cholesterol-lowering treatment could potentially prevent the development of microvascular dysfunction.
Asunto(s)
Enfermedades Cardiovasculares , Hiperlipoproteinemia Tipo II , Isquemia Miocárdica , Humanos , Lipoproteína(a) , Enfermedades Cardiovasculares/complicaciones , Prevalencia , Hiperlipoproteinemia Tipo II/complicaciones , Hiperlipoproteinemia Tipo II/diagnóstico , Hiperlipoproteinemia Tipo II/epidemiología , ColesterolRESUMEN
There is a close relationship between the SARS-CoV-2 virus and lipoproteins, in particular high-density lipoprotein (HDL). The severity of the coronavirus disease 2019 (COVID-19) is inversely correlated with HDL plasma levels. It is known that the SARS-CoV-2 spike (S) protein binds the HDL particle, probably depleting it of lipids and altering HDL function. Based on neutron reflectometry (NR) and the ability of HDL to efflux cholesterol from macrophages, we confirm these observations and further identify the preference of the S protein for specific lipids and the consequent effects on HDL function on lipid exchange ability. Moreover, the effect of the S protein on HDL function differs depending on the individuals lipid serum profile. Contrasting trends were observed for individuals presenting low triglycerides/high cholesterol serum levels (LTHC) compared to high triglycerides/high cholesterol (HTHC) or low triglycerides/low cholesterol serum levels (LTLC). Collectively, these results suggest that the S protein interacts with the HDL particle and, depending on the lipid profile of the infected individual, it impairs its function during COVID-19 infection, causing an imbalance in lipid metabolism.
Asunto(s)
COVID-19 , Lipoproteínas HDL , Humanos , Glicoproteína de la Espiga del Coronavirus , SARS-CoV-2/metabolismo , Colesterol , TriglicéridosRESUMEN
BACKGROUND: Patients with familial hypercholesterolemia (FH) display high levels of low-density lipoprotein cholesterol (LDL-c), endothelial dysfunction, and increased risk of premature atherosclerosis. We have previously shown that red blood cells (RBCs) from patients with type 2 diabetes induce endothelial dysfunction through increased arginase 1 and reactive oxygen species (ROS). OBJECTIVE: To test the hypothesis that RBCs from patients with FH (FH-RBCs) and elevated LDL-c induce endothelial dysfunction. METHODS AND RESULTS: FH-RBCs and LDL-c >5.0 mM induced endothelial dysfunction following 18-h incubation with isolated aortic rings from healthy rats compared to FH-RBCs and LDL-c <2.5 mM or RBCs from healthy subjects (H-RBCs). Inhibition of vascular but not RBC arginase attenuated the degree of endothelial dysfunction induced by FH-RBCs and LDL-c >5.0 mM. Furthermore, arginase 1 but not arginase 2 was elevated in the vasculature of aortic segments after incubation with FH-RBCs and LDL-c >5.0 mM. A superoxide scavenger, present throughout the 18-h incubation, attenuated the degree of endothelial dysfunction induced by FH-RBCs and LDL-c >5.0 mM. ROS production was elevated in these RBCs in comparison with H-RBCs. Scavenging of vascular ROS through various antioxidants also attenuated the degree of endothelial dysfunction induced by FH-RBCs and LDL-c >5.0 mM. This was corroborated by an increase in the lipid peroxidation product 4-hydroxynonenal. Lipidomic analysis of RBC lysates did not reveal any significant changes across the groups. CONCLUSION: FH-RBCs induce endothelial dysfunction dependent on LDL-c levels via arginase 1 and ROS-dependent mechanisms.
Asunto(s)
Diabetes Mellitus Tipo 2 , Hiperlipoproteinemia Tipo II , Animales , Ratas , LDL-Colesterol , Especies Reactivas de Oxígeno/metabolismo , Hiperlipoproteinemia Tipo II/complicaciones , Eritrocitos/metabolismoRESUMEN
Remote ischemic conditioning (RIC), brief repetitive cycles of ischemia and reperfusion in remote tissues, is known to induce robust protection against myocardial ischemia-reperfusion (I/R) injury in preclinical studies. However, translation of the beneficial effects to the clinical setting has been challenging. A possibility is that comorbidities, including hypercholesterolemia, interfere with the protective mechanisms of RIC. The aim of this study was to test if hypercholesterolemia attenuates the efficacy of RIC in patients with hypercholesterolemia. Patients with familial hypercholesterolemia (FH) with high (≥5.5 mmol/L) low-density lipoprotein cholesterol (LDL-C), FH with low (≤2.5 mmol/L) and healthy control subjects (n = 12 in each group) were included. Flow-mediated vasodilatation (FMD) of the brachial artery was evaluated, before and after a 20-min period of forearm ischemia and 20 min reperfusion (I/R) as a measure of endothelial function. Study subjects were randomized to a RIC protocol consisting of four cycles of 5 min of leg ischemia or sham using a crossover design. Forearm I/R induced significant reduction in FMD in all three groups during the sham procedure. RIC protected from endothelial dysfunction induced by forearm ischemia-reperfusion in healthy controls [FMD baseline 2.8 ± 2.3 vs. FMD after I/R + RIC 4.5 ± 4.0%; means (SD)] and in patients with FH with low LDL-C (4.5 ± 3.5 vs. 4.4 ± 4.2%). By contrast, RIC fails to protect against I/R-induced endothelial dysfunction in patients with FH and high LDL-C (3.9 ± 3.0 vs. 1.1 ± 1.5%; P < 0.01). These findings provide the first evidence in humans that the protective effect of RIC is lost in patients with elevated cholesterol.NEW & NOTEWORTHY We investigated the impact of hypercholesterolemia on the protective effect of RIC on ischemia-reperfusion injury in a well-characterized patient population with isolated hypercholesterolemia. The results show that the protective effect of RIC is absent in patients with hypercholesterolemia but is apparent in patients with hypercholesterolemic following treatment with lipid-lowering drugs. The results are of importance for the understanding of how comorbidities affect the therapeutic potential of RIC.
Asunto(s)
Hipercolesterolemia , Daño por Reperfusión Miocárdica , Humanos , LDL-Colesterol , Hipercolesterolemia/complicaciones , Hipercolesterolemia/diagnóstico , Isquemia , Daño por Reperfusión Miocárdica/prevención & controlRESUMEN
BACKGROUND AND AIMS: Lipoprotein(a) [Lp(a)] is a causal cardiovascular risk factor recommended to be measured at least once in a lifetime. We aimed to establish the association between routinely measured Lp(a) levels and the development of incident calcified aortic valve stenosis (CAVS). METHODS: This retrospective registry based observational study includes all individuals who had their Lp(a) measured in clinical routine between 2003 and 2017 at Karolinska University Laboratory, Stockholm. Data on pre-existing medical conditions, pharmacological treatment and outcomes were retrieved from national patient registries. RESULTS: The study comprised 23,298 individuals of which 489 received a CAVS diagnosis during the study period. The CAVS group (71 ± 11 years, 62% males) had a larger cardiovascular burden than the group without CAVS (55 ± 17 years and 48% males). Individuals with CAVS had higher Lp(a) 90th percentile (117 mg/dL or 249 nmol/L) than those without (89 mg/dL or 179 nmol/L) (p < 0.001), a difference seen in both sexes. The incident rates of CAVS per 10,000 person-years was 22.3 for individuals at >90th Lp(a) percentile compared to 12.8 for the 0th - 50th percentiles (p < 0.001). Sex and age adjusted hazard ratios for development of incident CAVS was 1.53 (95% CI 1.08-2.15; p = 0.016) and for surgical or endovascular intervention for CAVS 1.42 (95% CI 0.73-2.79; p = 0.304) for individuals at Lp(a) > 90th percentile compared to the 0th - 50th percentile. CONCLUSIONS: Lp(a) measured in the clinical routine is higher in individuals with CAVS. An Lp(a) level above >90th percentile is associated with the development of incident CAVS during a 14-year observational period.
Asunto(s)
Estenosis de la Válvula Aórtica , Lipoproteína(a) , Adulto , Anciano , Anciano de 80 o más Años , Válvula Aórtica/patología , Estenosis de la Válvula Aórtica/diagnóstico , Estenosis de la Válvula Aórtica/epidemiología , Estenosis de la Válvula Aórtica/etiología , Calcinosis , Constricción Patológica , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Factores de RiesgoRESUMEN
Current knowledge regarding mechanisms underlying cardiovascular complications in patients with COVID-19 is limited and urgently needed. We shed light on a previously unrecognized mechanism and unravel a key role of red blood cells, driving vascular dysfunction in patients with COVID-19 infection. We establish the presence of profound and persistent endothelial dysfunction in vivo in patients with COVID-19. Mechanistically, we show that targeting reactive oxygen species or arginase 1 improves vascular dysfunction mediated by red blood cells. These translational observations hold promise that restoring the redox balance in red blood cells might alleviate the clinical complications of COVID-19-associated vascular dysfunction.
RESUMEN
OBJECTIVE: To investigate the association of the cardiovascular risk factor lipoprotein (Lp)(a) and vascular complications in patients with type 1 diabetes. RESEARCH DESIGN AND METHODS: Patients with type 1 diabetes receiving regular care were recruited in this observational cross-sectional study and divided into four groups according to their Lp(a) levels in nmol/L (very low <10, low 10-30, intermediate 30-120, high >120). Prevalence of vascular complications was compared between the groups. In addition, the association between metabolic control, measured as HbA1c, and Lp(a) was studied. RESULTS: The patients (n = 1,860) had a median age of 48 years, diabetes duration of 25 years, and HbA1c of 7.8% (61 mmol/mol). The median Lp(a) was 19 (interquartile range 10-71) nmol/L. No significant differences between men and women were observed, but Lp(a) levels increased with increasing age. Patients in the high Lp(a) group had higher prevalence of complications than patients in the very low Lp(a) group. The age- and smoking-status-adjusted relative risk ratio of having any macrovascular disease was 1.51 (95% CI 1.01-2.28, P = 0.048); coronary heart disease, 1.70 (95% CI 0.97-3.00, P = 0.063); albuminuria, 1.68 (95% CI 1.12-2.50, P = 0.01); and calcified aortic valve disease, 2.03 (95% CI 1.03-4.03; P = 0.042). Patients with good metabolic control, HbA1c <6.9% (<52 mmol/mol), had significantly lower Lp(a) levels than patients with poorer metabolic control, HbA1c >6.9% (>52 mmol/mol). CONCLUSIONS: Lp(a) is a significant risk factor for macrovascular disease, albuminuria, and calcified aortic valve disease in patients with type 1 diabetes. Poor metabolic control in patients with type 1 diabetes is associated with increased Lp(a) levels.