Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
EMBO J ; 42(24): e115076, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-37987153

RESUMEN

In most metazoans, centrioles are lost during oogenesis, ensuring that the zygote is endowed with the correct number of two centrioles, which are paternally contributed. How centriole architecture is dismantled during oogenesis is not understood. Here, we analyze with unprecedent detail the ultrastructural and molecular changes during oogenesis centriole elimination in Caenorhabditis elegans. Centriole elimination begins with loss of the so-called central tube and organelle widening, followed by microtubule disassembly. The resulting cluster of centriolar proteins then disappears gradually, usually moving in a microtubule- and dynein-dependent manner to the plasma membrane. Our analysis indicates that neither Polo-like kinases nor the PCM, which modulate oogenesis centriole elimination in Drosophila, do so in C. elegans. Furthermore, we demonstrate that the central tube protein SAS-1 normally departs initially from the organelle, which loses integrity earlier in sas-1 mutants. Overall, our work provides novel mechanistic insights regarding the fundamental process of oogenesis centriole elimination.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Centriolos/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Microtúbulos/metabolismo , Drosophila/metabolismo , Oogénesis , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo
2.
Nucleic Acids Res ; 51(17): 9183-9202, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37548405

RESUMEN

RAD54 family DNA translocases partner with RAD51 recombinases to ensure stable genome inheritance, exhibiting biochemical activities both in promoting recombinase removal and in stabilizing recombinase association with DNA. Understanding how such disparate activities of RAD54 paralogs align with their biological roles is an ongoing challenge. Here we investigate the in vivo functions of Caenorhabditis elegans RAD54 paralogs RAD-54.L and RAD-54.B during meiotic prophase, revealing distinct contributions to the dynamics of RAD-51 association with DNA and to the progression of meiotic double-strand break repair (DSBR). While RAD-54.L is essential for RAD-51 removal from meiotic DSBR sites to enable recombination progression, RAD-54.B is largely dispensable for meiotic DSBR. However, RAD-54.B is required to prevent hyperaccumulation of RAD-51 on unbroken DNA during the meiotic sub-stage when DSBs and early recombination intermediates form. Moreover, DSB-independent hyperaccumulation of RAD-51 foci in the absence of RAD-54.B is RAD-54.L-dependent, revealing a hidden activity of RAD-54.L in promoting promiscuous RAD-51 association that is antagonized by RAD-54.B. We propose a model wherein a division of labor among RAD-54 paralogs allows germ cells to ramp up their capacity for efficient homologous recombination that is crucial to successful meiosis while counteracting potentially deleterious effects of unproductive RAD-51 association with unbroken DNA.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , ADN Helicasas , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas Portadoras/genética , ADN , Reparación del ADN , Células Germinativas/metabolismo , Meiosis , Profase , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , ADN Helicasas/metabolismo
3.
PLoS Biol ; 20(9): e3001784, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36107993

RESUMEN

Uncovering organizing principles of organelle assembly is a fundamental pursuit in the life sciences. Caenorhabditis elegans was key in identifying evolutionary conserved components governing assembly of the centriole organelle. However, localizing these components with high precision has been hampered by the minute size of the worm centriole, thus impeding understanding of underlying assembly mechanisms. Here, we used Ultrastructure Expansion coupled with STimulated Emission Depletion (U-Ex-STED) microscopy, as well as electron microscopy (EM) and electron tomography (ET), to decipher the molecular architecture of the worm centriole. Achieving an effective lateral resolution of approximately 14 nm, we localize centriolar and PeriCentriolar Material (PCM) components in a comprehensive manner with utmost spatial precision. We found that all 12 components analysed exhibit a ring-like distribution with distinct diameters and often with a 9-fold radial symmetry. Moreover, we uncovered that the procentriole assembles at a location on the centriole margin where SPD-2 and ZYG-1 also accumulate. Moreover, SAS-6 and SAS-5 were found to be present in the nascent procentriole, with SAS-4 and microtubules recruited thereafter. We registered U-Ex-STED and EM data using the radial array of microtubules, thus allowing us to map each centriolar and PCM protein to a specific ultrastructural compartment. Importantly, we discovered that SAS-6 and SAS-4 exhibit a radial symmetry that is offset relative to microtubules, leading to a chiral centriole ensemble. Furthermore, we established that the centriole is surrounded by a region from which ribosomes are excluded and to which SAS-7 localizes. Overall, our work uncovers the molecular architecture of the C. elegans centriole in unprecedented detail and establishes a comprehensive framework for understanding mechanisms of organelle biogenesis and function.


Asunto(s)
Proteínas de Caenorhabditis elegans , Centriolos , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/metabolismo , Centriolos/metabolismo , Centrosoma/metabolismo , Proteínas Quinasas/metabolismo
4.
Mol Biol Cell ; 33(8): ar75, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35544302

RESUMEN

The centriole is a minute cylindrical organelle present in a wide range of eukaryotic species. Most centrioles have a signature ninefold radial symmetry of microtubules that is imparted to the axonemes of the cilia and flagella they template, with nine centriolar microtubule doublets growing into nine axonemal microtubule doublets. There are exceptions to the ninefold symmetrical arrangement of axonemal microtubules in some species, with lower or higher fold symmetries. In the few cases where this has been examined, such alterations in axonemal symmetries are grounded in similar alterations in centriolar symmetries. Here, we examine the question of microtubule number continuity between centriole and axoneme in flagellated gametes of the gregarine Lecudina tuzetae, which have been reported to exhibit a sixfold radial symmetry of axonemal microtubules. We used time-lapse differential interference microscopy to identify the stage at which flagellated gametes are present. Thereafter, using electron microscopy and ultrastructure-expansion microscopy coupled to stimulated emission depletion superresolution imaging, we uncover that a six- or fivefold radial symmetry in the axoneme is accompanied by an eightfold radial symmetry in the centriole. We conclude that the transition between centriolar and axonemal microtubules can be characterized by unexpected plasticity.


Asunto(s)
Apicomplexa , Centriolos , Axonema , Cilios , Flagelos , Microtúbulos
5.
Proc Natl Acad Sci U S A ; 119(21): e2117865119, 2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-35576467

RESUMEN

Crossover formation is essential for proper segregation of homologous chromosomes during meiosis. Here, we show that Caenorhabditis elegans cyclin-dependent kinase 2 (CDK-2) partners with cyclin-like protein COSA-1 to promote crossover formation by promoting conversion of meiotic double-strand breaks into crossover­specific recombination intermediates. Further, we identify MutSγ component MSH-5 as a CDK-2 phosphorylation target. MSH-5 has a disordered C-terminal tail that contains 13 potential CDK phosphosites and is required to concentrate crossover­promoting proteins at recombination sites. Phosphorylation of the MSH-5 tail appears dispensable in a wild-type background, but when MutSγ activity is partially compromised, crossover formation and retention of COSA-1 at recombination sites are exquisitely sensitive to phosphosite loss. Our data support a model in which robustness of crossover designation reflects a positive feedback mechanism involving CDK-2­mediated phosphorylation and scaffold-like properties of the MSH5 C-terminal tail, features that combine to promote full recruitment and activity of crossover­promoting complexes.


Asunto(s)
Proteínas de Caenorhabditis elegans , Quinasa 2 Dependiente de la Ciclina , Proteínas de Unión al ADN , Meiosis , Complejo Sinaptonémico , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Segregación Cromosómica , Intercambio Genético , Quinasa 2 Dependiente de la Ciclina/genética , Quinasa 2 Dependiente de la Ciclina/metabolismo , Proteínas de Unión al ADN/metabolismo , Fosforilación , Complejo Sinaptonémico/genética , Complejo Sinaptonémico/metabolismo
6.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-34389685

RESUMEN

Meiotic recombination plays dual roles in the evolution and stable inheritance of genomes: Recombination promotes genetic diversity by reassorting variants, and it establishes temporary connections between pairs of homologous chromosomes that ensure their future segregation. Meiotic recombination is initiated by generation of double-strand DNA breaks (DSBs) by the conserved topoisomerase-like protein Spo11. Despite strong conservation of Spo11 across eukaryotic kingdoms, auxiliary complexes that interact with Spo11 complexes to promote DSB formation are poorly conserved. Here, we identify DSB-3 as a DSB-promoting protein in the nematode Caenorhabditis elegans Mutants lacking DSB-3 are proficient for homolog pairing and synapsis but fail to form crossovers. Lack of crossovers in dsb-3 mutants reflects a requirement for DSB-3 in meiotic DSB formation. DSB-3 concentrates in meiotic nuclei with timing similar to DSB-1 and DSB-2 (predicted homologs of yeast/mammalian Rec114/REC114), and DSB-1, DSB-2, and DSB-3 are interdependent for this localization. Bioinformatics analysis and interactions among the DSB proteins support the identity of DSB-3 as a homolog of MEI4 in conserved DSB-promoting complexes. This identification is reinforced by colocalization of pairwise combinations of DSB-1, DSB-2, and DSB-3 foci in structured illumination microscopy images of spread nuclei. However, unlike yeast Rec114, DSB-1 can interact directly with SPO-11, and in contrast to mouse REC114 and MEI4, DSB-1, DSB-2, and DSB-3 are not concentrated predominantly at meiotic chromosome axes. We speculate that variations in the meiotic program that have coevolved with distinct reproductive strategies in diverse organisms may contribute to and/or enable diversification of essential components of the meiotic machinery.


Asunto(s)
Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Roturas del ADN de Doble Cadena , Meiosis/fisiología , Animales , Proteínas de Caenorhabditis elegans/genética , Biología Computacional , Ingeniería Genética , Genoma , Oocitos/efectos de la radiación
7.
PLoS Biol ; 18(8): e3000817, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32813728

RESUMEN

During meiosis, chromosomes adopt a specialized organization involving assembly of a cohesin-based axis along their lengths, with DNA loops emanating from this axis. We applied novel, quantitative, and widely applicable cytogenetic strategies to elucidate the molecular bases of this organization using Caenorhabditis elegans. Analyses of wild-type (WT) chromosomes and de novo circular minichromosomes revealed that meiosis-specific HORMA-domain proteins assemble into cohorts in defined numbers and co-organize the axis together with 2 functionally distinct cohesin complexes (REC-8 and COH-3/4) in defined stoichiometry. We further found that REC-8 cohesins, which load during S phase and mediate sister-chromatid cohesion, usually occur as individual complexes, supporting a model wherein sister cohesion is mediated locally by a single cohesin ring. REC-8 complexes are interspersed in an alternating pattern with cohorts of axis-organizing COH-3/4 complexes (averaging 3 per cohort), which are insufficient to confer cohesion but can bind to individual chromatids, suggesting a mechanism to enable formation of asymmetric sister-chromatid loops. Indeed, immunofluorescence/fluorescence in situ hybridization (immuno-FISH) assays demonstrate frequent asymmetry in genomic content between the loops formed on sister chromatids. We discuss how features of chromosome axis/loop architecture inferred from our data can help to explain enigmatic, yet essential, aspects of the meiotic program.


Asunto(s)
Caenorhabditis elegans/genética , Proteínas de Ciclo Celular/genética , Cromátides/ultraestructura , Proteínas Cromosómicas no Histona/genética , Cromosomas/ultraestructura , Meiosis , Complejo Sinaptonémico/ultraestructura , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cromátides/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Segregación Cromosómica , Cromosomas/metabolismo , Análisis Citogenético , Hibridación Fluorescente in Situ , Fase S/genética , Complejo Sinaptonémico/metabolismo , Cohesinas
8.
Genetics ; 213(1): 79-96, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31345995

RESUMEN

Proper partitioning of homologous chromosomes during meiosis relies on the coordinated execution of multiple interconnected events: Homologs must locate, recognize, and align with their correct pairing partners. Further, homolog pairing must be coupled to assembly of the synaptonemal complex (SC), a meiosis-specific tripartite structure that maintains stable associations between the axes of aligned homologs and regulates formation of crossovers between their DNA molecules to create linkages that enable their segregation. Here, we identify HAL-3 (Homolog Alignment 3) as an important player in coordinating these key events during Caenorhabditis elegans meiosis. HAL-3, and the previously identified HAL-2, are interacting and interdependent components of a protein complex that localizes to the nucleoplasm of germ cells. hal-3 (or hal-2) mutants exhibit multiple meiotic prophase defects including failure to establish homolog pairing, inappropriate loading of SC subunits onto unpaired chromosome axes, and premature loss of synapsis checkpoint protein PCH-2. Further, loss of hal function results in misregulation of the subcellular localization and activity of Polo-like kinases (PLK-1 and PLK-2), which dynamically localize to different defined subnuclear sites during wild-type prophase progression to regulate distinct cellular events. Moreover, loss of PLK-2 activity partially restores tripartite SC structure in a hal mutant background, suggesting that the defect in pairwise SC assembly in hal mutants reflects inappropriate PLK activity. Together, our data support a model in which the nucleoplasmic HAL-2/HAL-3 protein complex constrains both localization and activity of meiotic Polo-like kinases, thereby preventing premature interaction with stage-inappropriate targets.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/metabolismo , Meiosis , Proteínas Nucleares/metabolismo , Animales , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ciclo Celular/genética , Mutación , Proteínas Nucleares/genética , Unión Proteica , Proteínas Serina-Treonina Quinasas/metabolismo , Complejo Sinaptonémico/genética , Complejo Sinaptonémico/metabolismo
9.
Cell ; 173(7): 1678-1691.e16, 2018 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-29754818

RESUMEN

Meiotic double-strand breaks (DSBs) are generated and repaired in a highly regulated manner to ensure formation of crossovers (COs) while also enabling efficient non-CO repair to restore genome integrity. We use structured-illumination microscopy to investigate the dynamic architecture of DSB repair complexes at meiotic recombination sites in relationship to the synaptonemal complex (SC). DSBs resected at both ends are converted into inter-homolog repair intermediates harboring two populations of BLM helicase and RPA, flanking a single population of MutSγ. These intermediates accumulate until late pachytene, when repair proteins disappear from non-CO sites and CO-designated sites become enveloped by SC-central region proteins, acquire a second MutSγ population, and lose RPA. These and other data suggest that the SC may protect CO intermediates from being dismantled inappropriately and promote CO maturation by generating a transient CO-specific repair compartment, thereby enabling differential timing and outcome of repair at CO and non-CO sites.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Reparación del ADN , Meiosis , Recombinación Genética/genética , Complejo Sinaptonémico/metabolismo , Animales , Caenorhabditis elegans/genética , Roturas del ADN de Doble Cadena , Proteínas de Unión al ADN/metabolismo , Imagenología Tridimensional , Microscopía , Profase , Recombinasa Rad51/metabolismo , Proteína de Replicación A/metabolismo , Complejo Sinaptonémico/química
10.
Dev Cell ; 45(2): 212-225.e7, 2018 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-29689196

RESUMEN

Meiotic chromosome movement is important for the pairwise alignment of homologous chromosomes, which is required for correct chromosome segregation. Movement is driven by cytoplasmic forces, transmitted to chromosome ends by nuclear membrane-spanning proteins. In animal cells, lamins form a prominent scaffold at the nuclear periphery, yet the role lamins play in meiotic chromosome movement is unclear. We show that chromosome movement correlates with reduced lamin association with the nuclear rim, which requires lamin phosphorylation at sites analogous to those that open lamina network crosslinks in mitosis. Failure to remodel the lamina results in delayed meiotic entry, altered chromatin organization, unpaired or interlocked chromosomes, and slowed chromosome movement. The remodeling kinases are delivered to lamins via chromosome ends coupled to the nuclear envelope, potentially enabling crosstalk between the lamina and chromosomal events. Thus, opening the lamina network plays a role in modulating contacts between chromosomes and the nuclear periphery during meiosis.


Asunto(s)
Animales Modificados Genéticamente/genética , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Segregación Cromosómica , Cromosomas/genética , Profase Meiótica I/genética , Lámina Nuclear/patología , Animales , Animales Modificados Genéticamente/crecimiento & desarrollo , Caenorhabditis elegans/crecimiento & desarrollo , Proteínas de Caenorhabditis elegans/genética , Núcleo Celular/genética , Núcleo Celular/patología , Emparejamiento Cromosómico , Citoplasma , Regulación de la Expresión Génica , Membrana Nuclear/genética , Membrana Nuclear/patología , Lámina Nuclear/genética , Fosforilación
11.
Nat Commun ; 9(1): 728, 2018 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-29463814

RESUMEN

Faithful chromosome segregation and genome maintenance requires the removal of all DNA bridges that physically link chromosomes before cells divide. Using C. elegans embryos we show that the LEM-3/Ankle1 nuclease defines a previously undescribed genome integrity mechanism by processing DNA bridges right before cells divide. LEM-3 acts at the midbody, the structure where abscission occurs at the end of cytokinesis. LEM-3 localization depends on factors needed for midbody assembly, and LEM-3 accumulation is increased and prolonged when chromatin bridges are trapped at the cleavage plane. LEM-3 locally processes chromatin bridges that arise from incomplete DNA replication, unresolved recombination intermediates, or the perturbance of chromosome structure. Proper LEM-3 midbody localization and function is regulated by AIR-2/Aurora B kinase. Strikingly, LEM-3 acts cooperatively with the BRC-1/BRCA1 homologous recombination factor to promote genome integrity. These findings provide a molecular basis for the suspected role of the LEM-3 orthologue Ankle1 in human breast cancer.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimología , Cromatina/metabolismo , Endodesoxirribonucleasas/metabolismo , Mitosis , Animales , Caenorhabditis elegans/embriología , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Cromatina/genética , Citocinesis , ADN/genética , ADN/metabolismo , Replicación del ADN , Endodesoxirribonucleasas/genética
12.
PLoS Genet ; 13(3): e1006670, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28339470

RESUMEN

During meiotic prophase, a structure called the synaptonemal complex (SC) assembles at the interface between aligned pairs of homologous chromosomes, and crossover recombination events occur between their DNA molecules. Here we investigate the inter-relationships between these two hallmark features of the meiotic program in the nematode C. elegans, revealing dynamic properties of the SC that are modulated by recombination. We demonstrate that the SC incorporates new subunits and switches from a more highly dynamic/labile state to a more stable state as germ cells progress through the pachytene stage of meiotic prophase. We further show that the more dynamic state of the SC is prolonged in mutants where meiotic recombination is impaired. Moreover, in meiotic mutants where recombination intermediates are present in limiting numbers, SC central region subunits become preferentially stabilized on the subset of chromosome pairs that harbor a site where pro-crossover factors COSA-1 and MutSγ are concentrated. Polo-like kinase PLK-2 becomes preferentially localized to the SCs of chromosome pairs harboring recombination sites prior to the enrichment of SC central region proteins on such chromosomes, and PLK-2 is required for this enrichment to occur. Further, late pachytene nuclei in a plk-2 mutant exhibit the more highly dynamic SC state. Together our data demonstrate that crossover recombination events elicit chromosome-autonomous stabilizing effects on the SC and implicate PLK-2 in this process. We discuss how this recombination-triggered modulation of SC state might contribute to regulatory mechanisms that operate during meiosis to ensure the formation of crossovers while at the same time limiting their numbers.


Asunto(s)
Caenorhabditis elegans/genética , Meiosis/genética , Recombinación Genética , Complejo Sinaptonémico/genética , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Intercambio Genético , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Recuperación de Fluorescencia tras Fotoblanqueo , Cinética , Profase Meiótica I/genética , Microscopía Confocal , Mutación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Complejo Sinaptonémico/metabolismo
13.
Genetics ; 203(2): 733-48, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27098914

RESUMEN

SUN (Sad1 and UNC-84) and KASH (Klarsicht, ANC-1, and Syne homology) proteins are constituents of the inner and outer nuclear membranes. They interact in the perinuclear space via C-terminal SUN-KASH domains to form the linker of nucleoskeleton and cytoskeleton (LINC) complex thereby bridging the nuclear envelope. LINC complexes mediate numerous biological processes by connecting chromatin with the cytoplasmic force-generating machinery. Here we show that the coiled-coil domains of SUN-1 are required for oligomerization and retention of the protein in the nuclear envelope, especially at later stages of female gametogenesis. Consistently, deletion of the coiled-coil domain makes SUN-1 sensitive to unilateral force exposure across the nuclear membrane. Premature loss of SUN-1 from the nuclear envelope leads to embryonic death due to loss of centrosome-nuclear envelope attachment. However, in contrast to previous notions we can show that the coiled-coil domain is dispensable for functional LINC complex formation, exemplified by successful chromosome sorting and synapsis in meiotic prophase I in its absence.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Membrana Nuclear/metabolismo , Oogonios/metabolismo , Multimerización de Proteína , Receptores Citoplasmáticos y Nucleares/metabolismo , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Femenino , Meiosis , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Unión Proteica , Dominios Proteicos , Receptores Citoplasmáticos y Nucleares/química , Receptores Citoplasmáticos y Nucleares/genética
14.
PLoS Biol ; 14(3): e1002412, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27011106

RESUMEN

During the first meiotic division, crossovers (COs) between homologous chromosomes ensure their correct segregation. COs are produced by homologous recombination (HR)-mediated repair of programmed DNA double strand breaks (DSBs). As more DSBs are induced than COs, mechanisms are required to establish a regulated number of COs and to repair remaining intermediates as non-crossovers (NCOs). We show that the Caenorhabditis elegans RMI1 homolog-1 (RMH-1) functions during meiosis to promote both CO and NCO HR at appropriate chromosomal sites. RMH-1 accumulates at CO sites, dependent on known pro-CO factors, and acts to promote CO designation and enforce the CO outcome of HR-intermediate resolution. RMH-1 also localizes at NCO sites and functions in parallel with SMC-5 to antagonize excess HR-based connections between chromosomes. Moreover, RMH-1 also has a major role in channeling DSBs into an NCO HR outcome near the centers of chromosomes, thereby ensuring that COs form predominantly at off-center positions.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Proteínas Cromosómicas no Histona/metabolismo , Intercambio Genético , Animales , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/genética , Segregación Cromosómica , Endonucleasas/metabolismo , Mutación , Fase Paquiteno
15.
Chromosoma ; 123(1-2): 15-24, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24036686

RESUMEN

Rapid chromosome movement during prophase of the first meiotic division has been observed in many organisms. It is generally concomitant with formation of the "meiotic chromosome bouquet," a special chromosome configuration in which one or both chromosome ends attach to the nuclear envelope and become concentrated within a limited area. The precise function of the chromosomal bouquet is still not fully understood. Chromosome mobility is implicated in homologous chromosome pairing, synaptonemal complex formation, recombination, and resolution of chromosome entanglements. The basic mechanistic module through which forces are exerted on chromosomes is widely conserved; however, phenotypic differences have been reported among various model organisms once movement is abrogated. Movements are transmitted to the chromosome ends by the nuclear membrane-bridging SUN/KASH complex and are dependent on cytoskeletal filaments and motor proteins located in the cytoplasm. Here we review the recent findings on chromosome mobility during meiosis in an animal model system: the Caenorhabditis elegans nematode.


Asunto(s)
Caenorhabditis elegans/citología , Cromosomas/metabolismo , Profase Meiótica I , Animales , Caenorhabditis elegans/metabolismo , Emparejamiento Cromosómico , Movimiento , Fase Paquiteno
16.
PLoS Genet ; 9(7): e1003591, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23901331

RESUMEN

Holliday junctions (HJs) are cruciform DNA structures that are created during recombination events. It is a matter of considerable importance to determine the resolvase(s) that promote resolution of these structures. We previously reported that C. elegans GEN-1 is a symmetrically cleaving HJ resolving enzyme required for recombinational repair, but we could not find an overt role in meiotic recombination. Here we identify C. elegans proteins involved in resolving meiotic HJs. We found no evidence for a redundant meiotic function of GEN-1. In contrast, we discovered two redundant HJ resolution pathways likely coordinated by the SLX-4 scaffold protein and also involving the HIM-6/BLM helicase. SLX-4 associates with the SLX-1, MUS-81 and XPF-1 nucleases and has been implicated in meiotic recombination in C. elegans. We found that C. elegans [mus-81; xpf-1], [slx-1; xpf-1], [mus-81; him-6] and [slx-1; him-6] double mutants showed a similar reduction in survival rates as slx-4. Analysis of meiotic diakinesis chromosomes revealed a distinct phenotype in these double mutants. Instead of wild-type bivalent chromosomes, pairs of "univalents" linked by chromatin bridges occur. These linkages depend on the conserved meiosis-specific transesterase SPO-11 and can be restored by ionizing radiation, suggesting that they represent unresolved meiotic HJs. This suggests the existence of two major resolvase activities, one provided by XPF-1 and HIM-6, the other by SLX-1 and MUS-81. In all double mutants crossover (CO) recombination is reduced but not abolished, indicative of further redundancy in meiotic HJ resolution. Real time imaging revealed extensive chromatin bridges during the first meiotic division that appear to be eventually resolved in meiosis II, suggesting back-up resolution activities acting at or after anaphase I. We also show that in HJ resolution mutants, the restructuring of chromosome arms distal and proximal to the CO still occurs, suggesting that CO initiation but not resolution is likely to be required for this process.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , ADN Helicasas/genética , ADN Cruciforme/genética , Proteínas de Unión al ADN/genética , Desoxirribonucleasas/genética , Endonucleasas/genética , Meiosis/genética , Animales , Caenorhabditis elegans/genética , Cromatina/genética , Segregación Cromosómica/genética , Intercambio Genético , Roturas del ADN de Doble Cadena , Humanos , Profase Meiótica I/genética , Ratones , Mutación , Recombinación Genética
17.
PLoS Genet ; 9(3): e1003335, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23505384

RESUMEN

Faithful chromosome segregation during meiosis I depends on the establishment of a crossover between homologous chromosomes. This requires induction of DNA double-strand breaks (DSBs), alignment of homologs, homolog association by synapsis, and repair of DSBs via homologous recombination. The success of these events requires coordination between chromosomal events and meiotic progression. The conserved SUN/KASH nuclear envelope bridge establishes transient linkages between chromosome ends and cytoskeletal forces during meiosis. In Caenorhabditis elegans, this bridge is essential for bringing homologs together and preventing nonhomologous synapsis. Chromosome movement takes place during synapsis and recombination. Concomitant with the onset of chromosome movement, SUN-1 clusters at chromosome ends associated with the nuclear envelope, and it is phosphorylated in a chk-2- and plk-2-dependent manner. Identification of all SUN-1 phosphomodifications at its nuclear N terminus allowed us to address their role in prophase I. Failures in recombination and synapsis led to persistent phosphorylations, which are required to elicit a delay in progression. Unfinished meiotic tasks elicited sustained recruitment of PLK-2 to chromosome ends in a SUN-1 phosphorylation-dependent manner that is required for continued chromosome movement and characteristic of a zygotene arrest. Furthermore, SUN-1 phosphorylation supported efficient synapsis. We propose that signals emanating from a failure to successfully finish meiotic tasks are integrated at the nuclear periphery to regulate chromosome end-led movement and meiotic progression. The single unsynapsed X chromosome in male meiosis is precluded from inducing a progression delay, and we found it was devoid of a population of phosphorylated SUN-1. This suggests that SUN-1 phosphorylation is critical to delaying meiosis in response to perturbed synapsis. SUN-1 may be an integral part of a checkpoint system to monitor establishment of the obligate crossover, inducible only in leptotene/zygotene. Unrepaired DSBs and unsynapsed chromosomes maintain this checkpoint, but a crossover intermediate is necessary to shut it down.


Asunto(s)
Proteínas de Caenorhabditis elegans , Emparejamiento Cromosómico/genética , Segregación Cromosómica/genética , Cromosomas/genética , Meiosis/genética , Receptores Citoplasmáticos y Nucleares , Animales , Caenorhabditis elegans/citología , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Citoesqueleto/genética , Citoesqueleto/metabolismo , Roturas del ADN de Doble Cadena , Masculino , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Recombinación Genética/genética , Cromosoma X/genética , Quinasa Tipo Polo 1
18.
Proc Natl Acad Sci U S A ; 109(9): 3440-5, 2012 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-22331911

RESUMEN

Introduction of multiple copies of a germ-line-expressed gene elicits silencing of the corresponding endogenous gene during Caenorhabditis elegans oogenesis; this process is referred to as germ-line cosuppression. Transformed plasmids assemble into extrachromosomal arrays resembling extra minichromosomes with repetitive structures. Loss of the transgene extrachromosomal array leads to reversion of the silencing phenomenon. Cosuppression and RNAi depend upon some of the same genes. In the C. elegans germ line, about half the cells undergo a physiological programmed cell death that shares most genetic requirements with somatic apoptosis. In addition, apoptosis is stimulated by DNA damage and synaptic failure mediated through different apoptotic checkpoints. We found that both germ-line cosuppression and RNAi of germ-line-expressed genes enhance apoptosis during C. elegans oogenesis. In contrast, apoptosis is not enhanced by extrachromosomal arrays carrying genes not driven by germ-line-specific promoters that thus do not elicit transgene-mediated cosuppression/silencing. Similarly, introduction of doubled-stranded RNA that shares no homology with endogenous genes has no effect on apoptosis. "Silencing-induced apoptosis" is dependent upon sir-2.1 and cep-1 (the worm p53 ortholog), and is accompanied by a rise in RAD-51 foci, a marker for ongoing DNA repair, indicating induction of DNA double-strand breaks. This finding suggests that the DNA damage-response pathway is involved. RNAi and cosuppression have been postulated as defense mechanisms against genomic intruders. We speculate that the mechanism here described may trigger the elimination of germ cells that have undergone viral infection or transposon activation.


Asunto(s)
Apoptosis/genética , Caenorhabditis elegans/genética , Interferencia de ARN , Animales , Caenorhabditis elegans/citología , Proteínas de Caenorhabditis elegans/fisiología , Reparación del ADN , Herencia Extracromosómica , Dosificación de Gen , Células Germinativas/patología , Mutación de Línea Germinal , Meiosis/genética , Mutagénesis Insercional , Plásmidos/genética , ARN Bicatenario/genética , Recombinasa Rad51/fisiología , Sirtuinas/fisiología , Transgenes , Proteína p53 Supresora de Tumor/fisiología
19.
Dev Cell ; 21(5): 948-58, 2011 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-22018921

RESUMEN

During meiosis, chromosomes must find and align with their homologous partners. SUN and KASH-domain protein pairs play a conserved role by establishing transient linkages between chromosome ends and cytoskeletal forces across the intact nuclear envelope (NE). In C. elegans, a pairing center (PC) on each chromosome mediates homolog pairing and linkage to the microtubule network. We report that the polo kinases PLK-1 and PLK-2 are targeted to the PC by ZIM/HIM-8-pairing proteins. Loss of plk-2 inhibits chromosome pairing and licenses synapsis between nonhomologous chromosomes, indicating that PLK-2 is required for PC-mediated interhomolog interactions. plk-2 is also required for meiosis-specific phosphorylation of SUN-1 and establishment of dynamic SUN/KASH (SUN-1/ZYG-12) modules that promote homolog pairing. Our results provide key insights into the regulation of homolog pairing and reveal that targeting of polo-like kinases to the NE by meiotic chromosomes establishes the conserved linkages to cytoskeletal forces needed for homology assessment.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Proteínas de Ciclo Celular/metabolismo , Emparejamiento Cromosómico/genética , Citoesqueleto/genética , Meiosis/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Animales , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ciclo Celular/genética , Citoesqueleto/metabolismo , Membrana Nuclear/genética , Membrana Nuclear/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas/genética , Quinasa Tipo Polo 1
20.
PLoS One ; 6(9): e24799, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21957461

RESUMEN

The cohesin complex is required for the cohesion of sister chromatids and for correct segregation during mitosis and meiosis. Crossover recombination, together with cohesion, is essential for the disjunction of homologous chromosomes during the first meiotic division. Cohesin has been implicated in facilitating recombinational repair of DNA lesions via the sister chromatid. Here, we made use of a new temperature-sensitive mutation in the Caenorhabditis elegans SMC-3 protein to study the role of cohesin in the repair of DNA double-strand breaks (DSBs) and hence in meiotic crossing over. We report that attenuation of cohesin was associated with extensive SPO-11-dependent chromosome fragmentation, which is representative of unrepaired DSBs. We also found that attenuated cohesin likely increased the number of DSBs and eliminated the need of MRE-11 and RAD-50 for DSB formation in C. elegans, which suggests a role for the MRN complex in making cohesin-loaded chromatin susceptible to meiotic DSBs. Notably, in spite of largely intact sister chromatid cohesion, backup DSB repair via the sister chromatid was mostly impaired. We also found that weakened cohesins affected mitotic repair of DSBs by homologous recombination, whereas NHEJ repair was not affected. Our data suggest that recombinational DNA repair makes higher demands on cohesins than does chromosome segregation.


Asunto(s)
Alelos , Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/genética , Recombinación Homóloga/genética , Temperatura , Secuencia de Aminoácidos , Animales , Caenorhabditis elegans/citología , Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/fisiología , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Cromátides/genética , Cromatina/genética , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/metabolismo , Emparejamiento Cromosómico/genética , Roturas del ADN de Doble Cadena , Reparación del ADN/genética , Humanos , Cinética , Masculino , Ratones , Datos de Secuencia Molecular , Mutación , Testículo/crecimiento & desarrollo , Cohesinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...