Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Acta Crystallogr D Struct Biol ; 78(Pt 3): 328-336, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35234147

RESUMEN

Over the last two decades, fragment-based drug discovery (FBDD) has emerged as an effective and efficient method to identify new chemical scaffolds for the development of lead compounds. X-ray crystallography can be used in FBDD as a tool to validate and develop fragments identified as binders by other methods. However, it is also often used with great success as a primary screening technique. In recent years, technological advances at macromolecular crystallography beamlines in terms of instrumentation, beam intensity and robotics have enabled the development of dedicated platforms at synchrotron sources for FBDD using X-ray crystallography. Here, the development of the Fast Fragment and Compound Screening (FFCS) platform, an integrated next-generation pipeline for crystal soaking, handling and data collection which allows crystallography-based screening of protein crystals against hundreds of fragments and compounds, at the Swiss Light Source is reported.


Asunto(s)
Proteínas , Sincrotrones , Cristalografía por Rayos X , Descubrimiento de Drogas/métodos , Proteínas/química , Suiza
2.
IUCrJ ; 6(Pt 3): 373-386, 2019 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-31098019

RESUMEN

Native single-wavelength anomalous dispersion (SAD) is an attractive experimental phasing technique as it exploits weak anomalous signals from intrinsic light scatterers (Z < 20). The anomalous signal of sulfur in particular, is enhanced at long wavelengths, however the absorption of diffracted X-rays owing to the crystal, the sample support and air affects the recorded intensities. Thereby, the optimal measurable anomalous signals primarily depend on the counterplay of the absorption and the anomalous scattering factor at a given X-ray wavelength. Here, the benefit of using a wavelength of 2.7 over 1.9 Šis demonstrated for native-SAD phasing on a 266 kDa multiprotein-ligand tubulin complex (T2R-TTL) and is applied in the structure determination of an 86 kDa helicase Sen1 protein at beamline BL-1A of the KEK Photon Factory, Japan. Furthermore, X-ray absorption at long wavelengths was controlled by shaping a lysozyme crystal into spheres of defined thicknesses using a deep-UV laser, and a systematic comparison between wavelengths of 2.7 and 3.3 Šis reported for native SAD. The potential of laser-shaping technology and other challenges for an optimized native-SAD experiment at wavelengths >3 Šare discussed.

3.
Nat Commun ; 8: 15216, 2017 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-28534504

RESUMEN

Human coronavirus (CoV) HKU1 is a pathogen causing acute respiratory illnesses and so far little is known about its biology. HKU1 virus uses its S1 subunit C-terminal domain (CTD) and not the N-terminal domain like other lineage A ß-CoVs to bind to its yet unknown human receptor. Here we present the crystal structure of HKU1 CTD at 1.9 Å resolution. The structure consists of three subdomains: core, insertion and subdomain-1 (SD-1). While the structure of the core and SD-1 subdomains of HKU1 are highly similar to those of other ß-CoVs, the insertion subdomain adopts a novel fold, which is largely invisible in the cryo-EM structure of the HKU1 S trimer. We identify five residues in the insertion subdomain that are critical for binding of neutralizing antibodies and two residues essential for receptor binding. Our study contributes to a better understanding of entry, immunity and evolution of CoV S proteins.


Asunto(s)
Betacoronavirus/metabolismo , Receptores Virales/química , Receptores Virales/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/metabolismo , Línea Celular , Infecciones por Coronavirus/patología , Infecciones por Coronavirus/virología , Cristalografía por Rayos X , Mapeo Epitopo , Epítopos/química , Humanos , Modelos Moleculares , Proteínas Mutantes/química , Unión Proteica , Dominios Proteicos , Multimerización de Proteína , Homología Estructural de Proteína , Internalización del Virus
4.
J Biol Chem ; 290(44): 26675-87, 2015 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-26354441

RESUMEN

TolR is a 15-kDa inner membrane protein subunit of the Tol-Pal complex in Gram-negative bacteria, and its function is poorly understood. Tol-Pal is recruited to cell division sites where it is involved in maintaining the integrity of the outer membrane. TolR is related to MotB, the peptidoglycan (PG)-binding stator protein from the flagellum, suggesting it might serve a similar role in Tol-Pal. The only structure thus far reported for TolR is of the periplasmic domain from Haemophilus influenzae in which N- and C-terminal residues had been deleted (TolR(62-133), Escherichia coli numbering). H. influenzae TolR(62-133) is a symmetrical dimer with a large deep cleft at the dimer interface. Here, we present the 1.7-Å crystal structure of the intact periplasmic domain of E. coli TolR (TolR(36-142)). E. coli TolR(36-142) is also dimeric, but the architecture of the dimer is radically different from that of TolR(62-133) due to the intertwining of its N and C termini. TolR monomers are rotated ∼180° relative to each other as a result of this strand swapping, obliterating the putative PG-binding groove seen in TolR(62-133). We found that removal of the strand-swapped regions (TolR(60-133)) exposes cryptic PG binding activity that is absent in the full-length domain. We conclude that to function as a stator in the Tol-Pal complex dimeric TolR must undergo large scale structural remodeling reminiscent of that proposed for MotB, where the N- and C-terminal sequences unfold in order for the protein to both reach and bind the PG layer ∼90 Å away from the inner membrane.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/química , Proteínas Bacterianas/química , Proteínas de Escherichia coli/química , Escherichia coli/química , Lipoproteínas/química , Proteínas de la Membrana/química , Peptidoglicano/química , Secuencia de Aminoácidos , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Flagelos/química , Flagelos/metabolismo , Expresión Génica , Interacciones Hidrofóbicas e Hidrofílicas , Lipoproteínas/genética , Lipoproteínas/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Peptidoglicano/genética , Peptidoglicano/metabolismo , Periplasma/química , Periplasma/metabolismo , Unión Proteica , Multimerización de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia
5.
J Mol Biol ; 427(17): 2852-66, 2015 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-26215615

RESUMEN

How ultra-high-affinity protein-protein interactions retain high specificity is still poorly understood. The interaction between colicin DNase domains and their inhibitory immunity (Im) proteins is an ultra-high-affinity interaction that is essential for the neutralisation of endogenous DNase catalytic activity and for protection against exogenous DNase bacteriocins. The colicin DNase-Im interaction is a model system for the study of high-affinity protein-protein interactions. However, despite the fact that closely related colicin-like bacteriocins are widely produced by Gram-negative bacteria, this interaction has only been studied using colicins from Escherichia coli. In this work, we present the first crystal structures of two pyocin DNase-Im complexes from Pseudomonas aeruginosa, pyocin S2 DNase-ImS2 and pyocin AP41 DNase-ImAP41. These structures represent divergent DNase-Im subfamilies and are important in extending our understanding of protein-protein interactions for this important class of high-affinity protein complex. A key finding of this work is that mutations within the immunity protein binding energy hotspot, helix III, are tolerated by complementary substitutions at the DNase-Immunity protein binding interface. Im helix III is strictly conserved in colicins where an Asp forms polar interactions with the DNase backbone. ImAP41 contains an Asp-to-Gly substitution in helix III and our structures show the role of a co-evolved substitution where Pro in DNase loop 4 occupies the volume vacated and removes the unfulfilled hydrogen bond. We observe the co-evolved mutations in other DNase-Immunity pairs that appear to underpin the split of this family into two distinct groups.


Asunto(s)
Complejos Multiproteicos/ultraestructura , Pseudomonas aeruginosa/metabolismo , Piocinas/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Colicinas/metabolismo , Cristalografía por Rayos X , Desoxirribonucleasas/metabolismo , Desoxirribonucleasas/ultraestructura , Datos de Secuencia Molecular , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Mutación , Filogenia , Unión Proteica , Mapeo de Interacción de Proteínas , Estructura Terciaria de Proteína/genética , Pseudomonas aeruginosa/genética , Análisis de Secuencia de ADN
6.
Science ; 340(6140): 1570-4, 2013 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-23812713

RESUMEN

Porins are ß-barrel outer-membrane proteins through which small solutes and metabolites diffuse that are also exploited during cell death. We have studied how the bacteriocin colicin E9 (ColE9) assembles a cytotoxic translocon at the surface of Escherichia coli that incorporates the trimeric porin OmpF. Formation of the translocon involved ColE9's unstructured N-terminal domain threading in opposite directions through two OmpF subunits, capturing its target TolB on the other side of the membrane in a fixed orientation that triggers colicin import. Thus, an intrinsically disordered protein can tunnel through the narrow pores of an oligomeric porin to deliver an epitope signal to the cell to initiate cell death.


Asunto(s)
Colicinas/metabolismo , Escherichia coli/metabolismo , Porinas/metabolismo , Membrana Celular/metabolismo , Colicinas/química , Colicinas/aislamiento & purificación , Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas Periplasmáticas/metabolismo , Multimerización de Proteína , Estructura Terciaria de Proteína , Transporte de Proteínas
7.
Proc Natl Acad Sci U S A ; 109(17): E1011-8, 2012 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-22493247

RESUMEN

Staphylococcus aureus and Staphylococcus epidermidis form communities (called biofilms) on inserted medical devices, leading to infections that affect many millions of patients worldwide and cause substantial morbidity and mortality. As biofilms are resistant to antibiotics, device removal is often required to resolve the infection. Thus, there is a need for new therapeutic strategies and molecular data that might assist their development. Surface proteins S. aureus surface protein G (SasG) and accumulation-associated protein (S. epidermidis) promote biofilm formation through their "B" regions. B regions contain tandemly arrayed G5 domains interspersed with approximately 50 residue sequences (herein called E) and have been proposed to mediate intercellular accumulation through Zn(2+)-mediated homodimerization. Although E regions are predicted to be unstructured, SasG and accumulation-associated protein form extended fibrils on the bacterial surface. Here we report structures of E-G5 and G5-E-G5 from SasG and biophysical characteristics of single and multidomain fragments. E sequences fold cooperatively and form interlocking interfaces with G5 domains in a head-to-tail fashion, resulting in a contiguous, elongated, monomeric structure. E and G5 domains lack a compact hydrophobic core, and yet G5 domain and multidomain constructs have thermodynamic stabilities only slightly lower than globular proteins of similar size. Zn(2+) does not cause SasG domains to form dimers. The work reveals a paradigm for formation of fibrils on the 100-nm scale and suggests that biofilm accumulation occurs through a mechanism distinct from the "zinc zipper." Finally, formation of two domains by each repeat (as in SasG) might reduce misfolding in proteins when the tandem arrangement of highly similar sequences is advantageous.


Asunto(s)
Proteínas Bacterianas/química , Biopelículas , Staphylococcus aureus/metabolismo , Staphylococcus epidermidis/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/metabolismo , Dimerización , Datos de Secuencia Molecular , Pliegue de Proteína , Termodinámica
8.
Q Rev Biophys ; 45(1): 57-103, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22085441

RESUMEN

It is more than 80 years since Gratia first described 'a remarkable antagonism between two strains of Escherichia coli'. Shown subsequently to be due to the action of proteins (or peptides) produced by one bacterium to kill closely related species with which it might be cohabiting, such bacteriocins have since been shown to be commonplace in the internecine warfare between bacteria. Bacteriocins have been studied primarily from the twin perspectives of how they shape microbial communities and how they penetrate bacteria to kill them. Here, we review the modes of action of a family of bacteriocins that cleave nucleic acid substrates in E. coli, known collectively as nuclease colicins, and the specific immunity (inhibitor) proteins that colicin-producing organisms make in order to avoid committing suicide. In a process akin to targeting in mitochondria, nuclease colicins engage in a variety of cellular associations in order to translocate their cytotoxic domains through the cell envelope to the cytoplasm. As well as informing on the process itself, the study of nuclease colicin import has also illuminated functional aspects of the host proteins they parasitize. We also review recent studies where nuclease colicins and their immunity proteins have been used as model systems for addressing fundamental problems in protein folding and protein-protein interactions, areas of biophysics that are intimately linked to the role of colicins in bacterial competition and to the import process itself.


Asunto(s)
Colicinas/metabolismo , Endonucleasas/metabolismo , Membrana Celular/metabolismo , Colicinas/química , Endonucleasas/química , Estructura Terciaria de Proteína , Transporte de Proteínas , Fuerza Protón-Motriz
9.
Proc Natl Acad Sci U S A ; 107(50): 21412-7, 2010 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-21098297

RESUMEN

The porins OmpF and OmpC are trimeric ß-barrel proteins with narrow channels running through each monomer that exclude molecules > 600 Da while mediating the passive diffusion of small nutrients and metabolites across the Gram-negative outer membrane (OM). Here, we elucidate the mechanism by which an entire soluble protein domain (> 6 kDa) is delivered through the lumen of such porins. Following high-affinity binding to the vitamin B(12) receptor in Escherichia coli, the bacteriocin ColE9 recruits OmpF or OmpC using an 83-residue intrinsically unstructured translocation domain (IUTD) to deliver a 16-residue TolB-binding epitope (TBE) in the center of the IUTD to the periplasm where it triggers toxin entry. We demonstrate that the IUTD houses two OmpF-binding sites, OBS1 (residues 2-18) and OBS2 (residues 54-63), which flank the TBE and bind with K(d)s of 2 and 24 µM, respectively, at pH 6.5 and 25 ºC. We show the two OBSs share the same binding site on OmpF and that the colicin must house at least one of them for antibiotic activity. Finally, we report the structure of the OmpF-OBS1 complex that shows the colicin bound within the porin lumen spanning the membrane bilayer. Our study explains how colicins exploit porins to deliver epitope signals to the bacterial periplasm and, more broadly, how the inherent flexibility and narrow cross-sectional area of an IUP domain can endow it with the ability to traverse a biological membrane via the constricted lumen of a ß-barrel membrane protein.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Membrana Celular/metabolismo , Epítopos , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Porinas/metabolismo , Proteínas de la Membrana Bacteriana Externa/química , Colicinas/química , Colicinas/genética , Colicinas/metabolismo , Cristalografía por Rayos X , Escherichia coli/citología , Proteínas de Escherichia coli/química , Modelos Moleculares , Porinas/química , Porinas/genética , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
10.
J Virol ; 84(19): 10063-73, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20668092

RESUMEN

Coronaviruses encode two classes of cysteine proteases, which have narrow substrate specificities and either a chymotrypsin- or papain-like fold. These enzymes mediate the processing of the two precursor polyproteins of the viral replicase and are also thought to modulate host cell functions to facilitate infection. The papain-like protease 1 (PL1(pro)) domain is present in nonstructural protein 3 (nsp3) of alphacoronaviruses and subgroup 2a betacoronaviruses. It participates in the proteolytic processing of the N-terminal region of the replicase polyproteins in a manner that varies among different coronaviruses and remains poorly understood. Here we report the first structural and biochemical characterization of a purified coronavirus PL1(pro) domain, that of transmissible gastroenteritis virus (TGEV). Its tertiary structure is compared with that of severe acute respiratory syndrome (SARS) coronavirus PL2(pro), a downstream paralog that is conserved in the nsp3's of all coronaviruses. We identify both conserved and unique structural features likely controlling the interaction of PL1(pro) with cofactors and substrates, including the tentative mapping of substrate pocket residues. The purified recombinant TGEV PL1(pro) was shown to cleave a peptide mimicking the cognate nsp2|nsp3 cleavage site. Like its PL2(pro) paralogs from several coronaviruses, TGEV PL1(pro) was also found to have deubiquitinating activity in an in vitro cleavage assay, implicating it in counteracting ubiquitin-regulated host cell pathways, likely including innate immune responses. In combination with the prior characterization of PL2(pro) from other alphacoronaviruses, e.g., human coronaviruses 229E and NL63, our results unequivocally establish that these viruses employ two PL(pro)s with overlapping specificities toward both viral and cellular substrates.


Asunto(s)
Papaína/química , Papaína/metabolismo , Virus de la Gastroenteritis Transmisible/enzimología , Proteínas Virales/química , Proteínas Virales/metabolismo , Secuencia de Aminoácidos , Animales , Coronavirus/enzimología , Coronavirus/genética , Proteasas Similares a la Papaína de Coronavirus , Cristalografía por Rayos X , Interacciones Huésped-Patógeno , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Papaína/genética , Conformación Proteica , Homología de Secuencia de Aminoácido , Electricidad Estática , Especificidad por Sustrato , Virus de la Gastroenteritis Transmisible/genética , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/genética , Proteínas Virales/genética
11.
Acta Crystallogr D Biol Crystallogr ; 65(Pt 12): 1292-300, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19966415

RESUMEN

The structure of the X (or ADRP) domain of a pathogenic variant of feline coronavirus (FCoV) has been determined in tetragonal and cubic crystal forms to 3.1 and 2.2 A resolution, respectively. In the tetragonal crystal form, glycerol-3-phosphate was observed in the ADP-ribose-binding site. Both crystal forms contained large solvent channels and had a solvent content of higher than 70%. Only very weak binding of this domain to ADP-ribose was detected in vitro. However, the structure with ADP-ribose bound was determined in the cubic crystal form at 3.9 A resolution. The structure of the FCoV X domain had the expected macro-domain fold and is the first structure of this domain from a coronavirus belonging to subgroup 1a.


Asunto(s)
Coronavirus Felino/enzimología , Dominios y Motivos de Interacción de Proteínas , ARN Polimerasa Dependiente del ARN/química , Proteínas no Estructurales Virales/química , Adenosina Difosfato Ribosa/química , Adenosina Difosfato Ribosa/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Cristalografía por Rayos X , Glicerofosfatos/química , Glicerofosfatos/metabolismo , Datos de Secuencia Molecular , Unión Proteica , Alineación de Secuencia , Homología de Secuencia de Aminoácido
12.
Acta Crystallogr D Biol Crystallogr ; 65(Pt 8): 839-46, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19622868

RESUMEN

Coronaviruses are a family of positive-stranded RNA viruses that includes important pathogens of humans and other animals. The large coronavirus genome (26-31 kb) encodes 15-16 nonstructural proteins (nsps) that are derived from two replicase polyproteins by autoproteolytic processing. The nsps assemble into the viral replication-transcription complex and nsp3, nsp4 and nsp6 are believed to anchor this enzyme complex to modified intracellular membranes. The largest part of the coronavirus nsp4 subunit is hydrophobic and is predicted to be embedded in the membranes. In this report, a conserved C-terminal domain ( approximately 100 amino-acid residues) has been delineated that is predicted to face the cytoplasm and has been isolated as a soluble domain using library-based construct screening. A prototypical crystal structure at 2.8 A resolution was obtained using nsp4 from feline coronavirus. Unmodified and SeMet-substituted proteins were crystallized under similar conditions, resulting in tetragonal crystals that belonged to space group P4(3). The phase problem was initially solved by single isomorphous replacement with anomalous scattering (SIRAS), followed by molecular replacement using a SIRAS-derived composite model. The structure consists of a single domain with a predominantly alpha-helical content displaying a unique fold that could be engaged in protein-protein interactions.


Asunto(s)
Coronavirus Felino/fisiología , Proteínas no Estructurales Virales/química , Animales , Gatos , Clonación Molecular , Infecciones por Coronavirus/metabolismo , Infecciones por Coronavirus/fisiopatología , Infecciones por Coronavirus/virología , Cristalización , Cristalografía por Rayos X , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Selenometionina/metabolismo , Alineación de Secuencia , Proteínas no Estructurales Virales/metabolismo , Virulencia , Replicación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA