Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
iScience ; 27(5): 109478, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38660410

RESUMEN

There is increasing interest in applying resilience concepts at different scales of biological organization to address major interdisciplinary challenges from cancer to climate change. It is unclear, however, whether resilience can be a unifying concept consistently applied across the breadth of the biological sciences, or whether there is limited capacity for integration. In this review, we draw on literature from molecular biology to community ecology to ascertain commonalities and shortcomings in how resilience is measured and interpreted. Resilience is studied at all levels of biological organization, although the term is often not used. There is a suite of resilience mechanisms conserved across biological scales, and there are tradeoffs that affect resilience. Resilience is conceptually useful to help diverse researchers think about how biological systems respond to perturbations, but we need a richer lexicon to describe the diversity of perturbations, and we lack widely applicable metrics of resilience.

2.
Ecol Lett ; 27(2): e14359, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38332550

RESUMEN

Evolutionary processes may have substantial impacts on community assembly, but evidence for phylogenetic relatedness as a determinant of interspecific interaction strength remains mixed. In this perspective, we consider a possible role for discordance between gene trees and species trees in the interpretation of phylogenetic signal in studies of community ecology. Modern genomic data show that the evolutionary histories of many taxa are better described by a patchwork of histories that vary along the genome rather than a single species tree. If a subset of genomic loci harbour trait-related genetic variation, then the phylogeny at these loci may be more informative of interspecific trait differences than the genome background. We develop a simple method to detect loci harbouring phylogenetic signal and demonstrate its application through a proof-of-principle analysis of Penicillium genomes and pairwise interaction strength. Our results show that phylogenetic signal that may be masked genome-wide could be detectable using phylogenomic techniques and may provide a window into the genetic basis for interspecific interactions.


Asunto(s)
Genoma , Genómica , Filogenia , Evolución Biológica , Fenotipo
3.
J Food Sci ; 89(3): 1414-1427, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38328986

RESUMEN

Sourdough fermentation is an ancient leavening method that uses wild yeasts to produce carbon dioxide, contributing to bread rise, and bacteria which produce organic acids. Sourdough starter cultures are known to be diverse in terms of the microorganisms they comprise and while specific genera and species of microorganisms have been identified from starters and associated with specific attributes, overarching relationships between sourdough starter culture microbiomes and bread quality are not well understood. The objective of this study was to characterize differences in the physical and chemical properties of breads produced with sourdough starter cultures with unique microbiomes. Sourdough starter cultures (n = 20) of known microbial populations were used to produce wheat-based dough and bread, which were analyzed for chemical and physical properties then compared to their microbial populations in order to identify relationships between microbial profiles and dough/bread qualities. All samples were also compared to bread produced only with Saccharomyces cerevisiae (baker's yeast). Significant differences among pH, titratable acidity, loaf volume, crumb firmness, crust color, free amino acids, and organic acids were observed when comparing sourdough breads to the yeast-only control (p ≤ 0.05). Furthermore, bacterial diversity of sourdough starter cultures was correlated with lactic acid and free amino acid in the dough and loaf volume and crumb firmness of baked breads. No significant correlations were found between fungal diversity and measured outcomes. These data demonstrate the importance of considering sourdough starter microbiomes as an ingredient in baked goods and they contribute to quality and safety outcomes in bread production. PRACTICAL APPLICATION: Sourdough starter cultures have diverse and dynamic populations of bacteria and yeasts, which contribute to the production of bread products. These populations can influence the physical and chemical properties of sourdough fermentation and final breads. Understanding of the relationship between sourdough starter microbiomes and bread quality parameters can lead to targeted development of sourdough bread products with specific physical and chemical properties.


Asunto(s)
Microbiota , Levadura Seca , Pan/análisis , Triticum/metabolismo , Saccharomyces cerevisiae/metabolismo , Fermentación , Bacterias/metabolismo , Aminoácidos/metabolismo
4.
Fungal Genet Biol ; 171: 103862, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38218228

RESUMEN

Although Penicillium molds can have significant impacts on agricultural, industrial, and biomedical systems, the ecological roles of Penicillium species in many microbiomes are not well characterized. Here we utilized a collection of 35 Penicillium strains isolated from cheese rinds to broadly investigate the genomic potential for secondary metabolism in cheese-associated Penicillium species, the impact of Penicillium on bacterial community assembly, and mechanisms of Penicillium-bacteria interactions. Using antiSMASH, we identified 1558 biosynthetic gene clusters, 406 of which were mapped to known pathways, including several mycotoxins and antimicrobial compounds. By measuring bacterial abundance and fungal mRNA expression when culturing representative Penicillium strains with a cheese rind bacterial community, we observed divergent impacts of different Penicillium strains, from strong inhibitors of bacterial growth to those with no impact on bacterial growth or community composition. Through differential mRNA expression analyses, Penicillium strains demonstrated limited differential gene expression in response to the bacterial community. We identified a few shared responses between the eight tested Penicillium strains, primarily upregulation of nutrient metabolic pathways, but we did not identify a conserved fungal response to growth in a multispecies community. These results in tandem suggest high variation among cheese-associated Penicillium species in their ability to shape bacterial community development and highlight important ecological diversity within this iconic genus.


Asunto(s)
Queso , Microbiota , Penicillium , Queso/microbiología , Penicillium/genética , Perfilación de la Expresión Génica , Microbiota/genética , Genómica , Bacterias , ARN Mensajero/metabolismo
5.
Annu Rev Microbiol ; 77: 381-402, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37713453

RESUMEN

For thousands of years, humans have enjoyed the novel flavors, increased shelf-life, and nutritional benefits that microbes provide in fermented foods and beverages. Recent sequencing surveys of ferments have mapped patterns of microbial diversity across space, time, and production practices. But a mechanistic understanding of how fermented food microbiomes assemble has only recently begun to emerge. Using three foods as case studies (surface-ripened cheese, sourdough starters, and fermented vegetables), we use an ecological and evolutionary framework to identify how microbial communities assemble in ferments. By combining in situ sequencing surveys with in vitro models, we are beginning to understand how dispersal, selection, diversification, and drift generate the diversity of fermented food communities. Most food producers are unaware of the ecological processes occurring in their production environments, but the theory and models of ecology and evolution can provide new approaches for managing fermented food microbiomes, from farm to ferment.


Asunto(s)
Alimentos Fermentados , Microbiota , Humanos
6.
ISME J ; 17(9): 1504-1516, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37524910

RESUMEN

Experimental studies of microbial evolution have largely focused on monocultures of model organisms, but most microbes live in communities where interactions with other species may impact rates and modes of evolution. Using the cheese rind model microbial community, we determined how species interactions shape the evolution of the widespread food- and animal-associated bacterium Staphylococcus xylosus. We evolved S. xylosus for 450 generations alone or in co-culture with one of three microbes: the yeast Debaryomyces hansenii, the bacterium Brevibacterium aurantiacum, and the mold Penicillium solitum. We used the frequency of colony morphology mutants (pigment and colony texture phenotypes) and whole-genome sequencing of isolates to quantify phenotypic and genomic evolution. The yeast D. hansenii strongly promoted diversification of S. xylosus. By the end of the experiment, all populations co-cultured with the yeast were dominated by pigment and colony morphology mutant phenotypes. Populations of S. xylosus grown alone, with B. aurantiacum, or with P. solitum did not evolve novel phenotypic diversity. Whole-genome sequencing of individual mutant isolates across all four treatments identified numerous unique mutations in the operons for the SigB, Agr, and WalRK global regulators, but only in the D. hansenii treatment. Phenotyping and RNA-seq experiments highlighted altered pigment and biofilm production, spreading, stress tolerance, and metabolism of S. xylosus mutants. Fitness experiments revealed antagonistic pleiotropy, where beneficial mutations that evolved in the presence of the yeast had strong negative fitness effects in other biotic environments. This work demonstrates that bacterial-fungal interactions can have long-term evolutionary consequences within multispecies microbiomes by facilitating the evolution of strain diversity.


Asunto(s)
Saccharomyces cerevisiae , Staphylococcus , Animales , Staphylococcus/genética , Bacterias , Interacciones Microbianas , Hongos
7.
Analyst ; 148(13): 3002-3018, 2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37259951

RESUMEN

Bacterial-fungal interactions (BFIs) can shape the structure of microbial communities, but the small molecules mediating these BFIs are often understudied. We explored various optimization steps for our microbial culture and chemical extraction protocols for bacterial-fungal co-cultures, and liquid chromatography-tandem mass spectrometry (LC-MS/MS) revealed that metabolomic profiles are mainly comprised of fungi derived features, indicating that fungi are the key contributors to small molecules in BFIs. LC-inductively coupled plasma MS (LC-ICP-MS) and MS/MS based dereplication using database searching revealed the presence of several known fungal specialized metabolites and structurally related analogues in these extracts, including siderophores such as desferrichrome, desferricoprogen, and palmitoylcoprogen. Among these analogues, a novel putative coprogen analogue possessing a terminal carboxylic acid motif was identified from Scopulariopsis sp. JB370, a common cheese rind fungus, and its structure was elucidated via MS/MS fragmentation. Based on these findings, filamentous fungal species appear to be capable of producing multiple siderophores with potentially different biological roles (i.e. various affinities for different forms of iron). These findings highlight that fungal species are important contributors to microbiomes via their production of abundant specialized metabolites and that elucidating their role in complex communities should continue to be a priority.


Asunto(s)
Sideróforos , Espectrometría de Masas en Tándem , Cromatografía Liquida/métodos , Espectrometría de Masas en Tándem/métodos , Bacterias , Metabolómica/métodos
8.
mBio ; 14(3): e0076923, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37162223

RESUMEN

Potent antimicrobial metabolites are produced by filamentous fungi in pure culture, but their ecological functions in nature are often unknown. Using an antibacterial Penicillium isolate and a cheese rind microbial community, we demonstrate that a fungal specialized metabolite can regulate the diversity of bacterial communities. Inactivation of the global regulator, LaeA, resulted in the loss of antibacterial activity in the Penicillium isolate. Cheese rind bacterial communities assembled with the laeA deletion strain had significantly higher bacterial abundances than the wild-type strain. RNA-sequencing and metabolite profiling demonstrated a striking reduction in the expression and production of the natural product pseurotin in the laeA deletion strain. Inactivation of a core gene in the pseurotin biosynthetic cluster restored bacterial community composition, confirming the role of pseurotins in mediating bacterial community assembly. Our discovery demonstrates how global regulators of fungal transcription can control the assembly of bacterial communities and highlights an ecological role for a widespread class of fungal specialized metabolites. IMPORTANCE Cheese rinds are economically important microbial communities where fungi can impact food quality and aesthetics. The specific mechanisms by which fungi can regulate bacterial community assembly in cheeses, other fermented foods, and microbiomes in general are largely unknown. Our study highlights how specialized metabolites secreted by a Penicillium species can mediate cheese rind development via differential inhibition of bacterial community members. Because LaeA regulates specialized metabolites and other ecologically relevant traits in a wide range of filamentous fungi, this global regulator may have similar impacts in other fungus-dominated microbiomes.


Asunto(s)
Hongos , Penicillium , Hongos/genética , Hongos/metabolismo , Bacterias/genética , Penicillium/genética , Penicillium/metabolismo , Secuencia de Bases , Antibacterianos/farmacología , Antibacterianos/metabolismo
9.
mSphere ; 8(4): e0004723, 2023 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-37219436

RESUMEN

The observation that Penicillium molds can inhibit the growth of Staphylococcus was a catalyst for the antibiotic revolution. Considerable attention has been paid to purified Penicillium metabolites that inhibit bacteria, but little is known about how Penicillium species impact the ecology and evolution of bacteria in multispecies microbial communities. Here, we investigated how four different species of Penicillium can impact global transcription and evolution of a widespread Staphylococcus species (S. equorum) using the cheese rind model microbiome. Through RNA sequencing, we identified a core transcriptional response of S. equorum against all five tested Penicillium strains, including upregulation of thiamine biosynthesis, fatty acid degradation, and amino acid metabolism as well as downregulation of genes involved in the transport of siderophores. In a 12-week evolution experiment where we co-cultured S. equorum with the same Penicillium strains, we observed surprisingly few non-synonymous mutations across S. equorum populations evolved with the Penicillium species. A mutation in a putative DHH family phosphoesterase gene only occurred in populations evolved without Penicillium and decreased the fitness of S. equorum when co-cultured with an antagonistic Penicillium strain. Our results highlight the potential for conserved mechanisms of Staphylococcus-Penicillium interactions and demonstrate how fungal biotic environments may constrain the evolution of bacterial species.IMPORTANCEFungi and bacteria are commonly found co-occurring both in natural and synthetic microbiomes, but our understanding of fungal-bacterial interactions is limited to a handful of species. Conserved mechanisms of interactions and evolutionary consequences of fungal-bacterial interactions are largely unknown. Our RNA sequencing and experimental evolution data with Penicillium species and the bacterium S. equorum demonstrate that divergent fungal species can elicit conserved transcriptional and genomic responses in co-occurring bacteria. Penicillium molds are integral to the discovery of novel antibiotics and production of certain foods. By understanding how Penicillium species affect bacteria, our work can further efforts to design and manage Penicillium-dominated microbial communities in industry and food production.


Asunto(s)
Queso , Penicillium , Transcriptoma , Queso/microbiología , Penicillium/genética , Bacterias/genética , Staphylococcus/genética , Staphylococcus/metabolismo , Hongos/genética , Antibacterianos/farmacología
10.
bioRxiv ; 2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36993360

RESUMEN

Bacterial-fungal interactions (BFIs) can shape the structure of microbial communities, but the small molecules mediating these BFIs are often understudied. We explored various optimization steps for our microbial culture and chemical extraction protocols for bacterial-fungal co-cultures, and liquid chromatography-tandem mass spectrometry (LC-MS/MS) revealed that metabolomic profiles are mainly comprised of fungi derived features, indicating that fungi are the key contributors to small molecule mediated BFIs. LC-inductively coupled plasma MS (LC-ICP-MS) and MS/MS based dereplication using database searching revealed the presence of several known fungal specialized metabolites and structurally related analogues in these extracts, including siderophores such as desferrichrome, desferricoprogen, and palmitoylcoprogen. Among these analogues, a novel putative coprogen analogue possessing a terminal carboxylic acid motif was identified from Scopulariopsis spp. JB370, a common cheese rind fungus, and its structure was elucidated via MS/MS fragmentation. Based on these findings, filamentous fungal species appear to be capable of producing multiple siderophores with potentially different biological roles (i.e. various affinities for different forms of iron). These findings highlight that fungal species are important contributors to microbiomes via their production of abundant specialized metabolites and their role in complex communities should continue to be a priority.

11.
mSystems ; 7(5): e0058322, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36073805

RESUMEN

The diversity and functional significance of microbiomes have become increasingly clear through the extensive sampling of Earth's many habitats and the rapid adoption of new sequencing technologies. However, much remains unknown about what makes a "healthy" microbiome, how to restore a disrupted microbiome, and how microbiomes assemble. In December 2019, we convened a workshop that focused on how to identify potential "rules of life" that govern microbiome structure and function. This collection of mSystems Perspective pieces reflects many of the main challenges and opportunities in the field identified by both in-person and virtual workshop participants. By borrowing conceptual and theoretical approaches from other fields, including economics and philosophy, these pieces suggest new ways to dissect microbiome patterns and processes. The application of conceptual advances, including trait-based theory and community coalescence, is providing new insights on how to predict and manage microbiome diversity and function. Technological and analytical advances, including deep transfer learning, metabolic models, and advances in analytical chemistry, are helping us sift through complex systems to pinpoint mechanisms of microbiome assembly and dynamics. Integration of all of these advancements (theory, concepts, technology) across biological and spatial scales is providing dramatically improved temporal and spatial resolution of microbiome dynamics. This integrative microbiome research is happening in a new moment in science where academic institutions, scientific societies, and funding agencies must act collaboratively to support and train a diverse and inclusive community of microbiome scientists.


Asunto(s)
Microbiota , Humanos , Microbiota/genética
12.
mSystems ; 7(3): e0015722, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35670539

RESUMEN

Despite the popularity of kombucha tea, the distribution of different microbes across kombucha ferments and how those microbes interact within communities are not well characterized. Using metagenomics, comparative genomics, synthetic community experiments, and metabolomics, we determined the taxonomic, ecological, and functional diversity of 23 distinct kombuchas from across the United States. Shotgun metagenomic sequencing demonstrated that the bacterium Komagataeibacter rhaeticus and the yeast Brettanomyces bruxellensis were the most common microbes in the sampled kombucha communities. To determine the specificity of bacterium-yeast interactions, we experimentally quantified microbial interactions within kombucha biofilms by measuring densities of interacting species and biofilm production. In pairwise combinations of bacteria and yeast, B. bruxellensis and individual strains of Komagataeibacter spp. were sufficient to form kombucha fermentations with robust biofilms, but Zygosaccharomyces bisporus, another yeast found in kombucha, did not stimulate bacteria to produce biofilms. Profiling the spent media of both yeast species using nuclear magnetic resonance spectroscopy suggested that the enhanced ability of B. bruxellensis to ferment and produce key metabolites in sucrose-sweetened tea may explain why it stimulates biofilm formation. Comparative genomics demonstrated that Komagataeibacter spp. with >99% genomic similarity can still have dramatic differences in biofilm production, with strong producers yielding five times more biofilm than the weakest producers. IMPORTANCE Through an integration of metagenomic and experimental approaches, our work reveals the diversity and nature of interactions among key taxa in kombucha microbiomes through the construction of synthetic microbial pairs. Manipulation of these microbes in kombucha has the potential to shape both the fermentation qualities of kombucha and the production of biofilms and is valuable for kombucha beverage producers, biofilm engineers, and synthetic ecologists.


Asunto(s)
Té de Kombucha , Té de Kombucha/análisis , Fermentación , Bebidas/microbiología , Bacterias/genética , Metagenoma
13.
J Exp Biol ; 225(7)2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35311905

RESUMEN

There are complex interactions between an organism's microbiome and its response to stressors, often referred to as the 'gut-brain axis'; however, the ecological relevance of this axis in wild animals remains poorly understood. Here, we used a chronic mild stress protocol to induce stress in wild-caught house sparrows (Passer domesticus), and compared microbial communities among stressed animals, those recovering from stress, captive controls (unstressed) and a group not brought into captivity. We assessed changes in microbial communities and abundance of shed microbes by culturing cloacal samples on multiple media to select for aerobic and anaerobic bacteria and fungi. We complemented this with cultivation-independent 16S and ITS rRNA gene amplification and sequencing, pairing these results with host physiological and immune metrics, including body mass change, relative spleen mass and plasma corticosterone concentrations. We found significant effects of stress and captivity on the house sparrow microbiomes, with stress leading to an increased relative abundance of endotoxin-producing bacteria - a possible mechanism for the hyperinflammatory response observed in captive avians. While we found evidence that the microbiome community partially recovers after stress cessation, animals may lose key taxa, and the abundance of endotoxin-producing bacteria persists. Our results suggest an overall link between chronic stress, host immune system and the microbiome, with the loss of potentially beneficial taxa (e.g. lactic acid bacteria), and an increase in endotoxin-producing bacteria due to stress and captivity. Ultimately, consideration of the host's microbiome may be useful when evaluating the impact of stressors on individual and population health.


Asunto(s)
Microbiota , Gorriones , Animales , Animales Salvajes/fisiología , Bacterias/genética , Corticosterona , Endotoxinas , Gorriones/fisiología
14.
PLoS One ; 16(5): e0247285, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34019539

RESUMEN

Across eukaryotes, homopolymeric repeats of amino acids are enriched in regulatory proteins such as transcription factors and chromatin remodelers. These domains play important roles in signaling, binding, prion formation, and functional phase separation. Azf1p is a prion-forming yeast transcription factor that contains two homorepeat domains, a polyglutamine and a polyasparagine domain. In this work, we report a new phenotype for Azf1p and identify a large set of genes that are regulated by Azf1p during growth in glucose. We show that the polyasparagine (polyN) domain plays a subtle role in transcription but is dispensable for Azf1p localization and prion formation. Genes upregulated upon deletion of the polyN domain are enriched in functions related to carbon metabolism and storage. This domain may therefore be a useful target for engineering yeast strains for fermentation applications and small molecule production. We also report that both the polyasparagine and polyglutamine domains vary in length across strains of S. cerevisiae and propose a model for how this variation may impact protein function.


Asunto(s)
Péptidos/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Regulación Fúngica de la Expresión Génica , Glucosa/metabolismo , Proteínas Priónicas/metabolismo , Dominios Proteicos , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/química , Factores de Transcripción/genética
15.
J Dairy Sci ; 104(5): 6283-6294, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33888221

RESUMEN

Production of artisan cheeses, including surface-ripened cheeses, has increased in the United States over the past 2 decades. Although many of these cheesemakers report unique quality and spoilage problems during production, a systematic assessment of the quality concerns facing this sector of specialty cheese production has not been conducted. Here we report the effects of microbial spoilage and quality issues on US artisan cheese production. In a survey of 61 cheesemakers, the most common issues reported were undesirable surface molds (71%) and incorrect or unexpected colors or pigments on rinds (54%). When asked, 18% of participants indicated that they were extremely concerned about quality and spoilage problems, and they indicated that their quality standards are frequently not met, either annually (39%) or monthly (33%). Although most of the respondents (62%) said that just 0 to 5% of their cheese was lost or rendered less valuable due to quality issues annually, a small number (7% combined) reported large losses of 20 to 30% or >30% of their product lost or rendered less valuable. Almost all respondents (95%) agreed that improved quality would reduce waste, increase profits, and improve production. The survey respondents indicated in open response questions that they want access to more online resources related to quality issues and digital forums to discuss issues with experts and peers when problems arise. These findings represent the first attempt to document and estimate the effect of quality and spoilage on the American artisan cheese industry. Future work should investigate what technologies, interventions, or information could reduce losses from these problems.


Asunto(s)
Queso , Animales , Queso/análisis , Color , Microbiología de Alimentos , Hongos , Encuestas y Cuestionarios , Estados Unidos
16.
Gut Microbes ; 13(1): 1-16, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33651646

RESUMEN

Vitamins have well-established roles in bacterial metabolism. Menaquinones (MKn, n = prenyl units in sidechain) are bacterially produced forms of vitamin K produced by the gut microbiota and consumed in the diet. Little is known about the influence of dietary vitamin K quinones on gut microbial composition and MKn production. Here, male and female C57BL6 mice were fed a vitamin K deficient diet or vitamin K sufficient diets containing phylloquinone (PK, plant-based vitamin K form), MK4, and/or MK9. DNA was extracted from cecal contents and 16S sequencing conducted to assess microbial composition. Cecal microbial community composition was significantly different in vitamin K deficient female mice compared to females on vitamin K sufficient diets (all p < .007). Parallel trends were seen in male mice, but were not statistically significant (all p > .05 but <0.1). Next, stable isotope-labeled vitamin K quinones were supplemented to male and female C57BL6 mice (2H7PK, 13C11MK4, 2H7MK7, 2H7MK9) and to an in vitro fermentation model inoculated with human stool (2H7PK, 2H7MK4, 2H7MK9, or vitamin K precursor 2H8-menadione). Vitamin K quinones in feces and culture aliquots were measured using LC-MS. In vivo, supplemented vitamin K quinones were remodeled to other MKn (2H7- or 13C6-labeled MK4, MK10, MK11, and MK12), but in vitro only the precursor 2H8-menadione was remodeled to 2H7MK4, 2H7MK9, 2H7MK10, and 2H7MK11. These results suggest that dietary vitamin K deficiency alters the gut microbial community composition. Further studies are needed to determine if menadione generated by host metabolism may serve as an intermediate in dietary vitamin K remodeling in vivo.


Asunto(s)
Bacterias/metabolismo , Ciego/microbiología , Suplementos Dietéticos , Microbioma Gastrointestinal/fisiología , Vitamina K/administración & dosificación , Vitaminas/administración & dosificación , Adulto , Animales , Bacterias/crecimiento & desarrollo , Reactores Biológicos , Dieta , Heces/microbiología , Femenino , Fermentación , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Vitamina K 2/metabolismo , Vitamina K 3/metabolismo , Deficiencia de Vitamina K/microbiología , Adulto Joven
17.
Nat Rev Gastroenterol Hepatol ; 18(3): 196-208, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33398112

RESUMEN

An expert panel was convened in September 2019 by The International Scientific Association for Probiotics and Prebiotics (ISAPP) to develop a definition for fermented foods and to describe their role in the human diet. Although these foods have been consumed for thousands of years, they are receiving increased attention among biologists, nutritionists, technologists, clinicians and consumers. Despite this interest, inconsistencies related to the use of the term 'fermented' led the panel to define fermented foods and beverages as "foods made through desired microbial growth and enzymatic conversions of food components". This definition, encompassing the many varieties of fermented foods, is intended to clarify what is (and is not) a fermented food. The distinction between fermented foods and probiotics is further clarified. The panel also addressed the current state of knowledge on the safety, risks and health benefits, including an assessment of the nutritional attributes and a mechanistic rationale for how fermented foods could improve gastrointestinal and general health. The latest advancements in our understanding of the microbial ecology and systems biology of these foods were discussed. Finally, the panel reviewed how fermented foods are regulated and discussed efforts to include them as a separate category in national dietary guidelines.


Asunto(s)
Alimentos Fermentados , Política Nutricional , Prebióticos , Probióticos , Consenso , Humanos
18.
Elife ; 102021 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-33496265

RESUMEN

Humans have relied on sourdough starter microbial communities to make leavened bread for thousands of years, but only a small fraction of global sourdough biodiversity has been characterized. Working with a community-scientist network of bread bakers, we determined the microbial diversity of 500 sourdough starters from four continents. In sharp contrast with widespread assumptions, we found little evidence for biogeographic patterns in starter communities. Strong co-occurrence patterns observed in situ and recreated in vitro demonstrate that microbial interactions shape sourdough community structure. Variation in dough rise rates and aromas were largely explained by acetic acid bacteria, a mostly overlooked group of sourdough microbes. Our study reveals the extent of microbial diversity in an ancient fermented food across diverse cultural and geographic backgrounds.


Sourdough bread is an ancient fermented food that has sustained humans around the world for thousands of years. It is made from a sourdough 'starter culture' which is maintained, portioned, and shared among bread bakers around the world. The starter culture contains a community of microbes made up of yeasts and bacteria, which ferment the carbohydrates in flour and produce the carbon dioxide gas that makes the bread dough rise before baking. The different acids and enzymes produced by the microbial culture affect the bread's flavor, texture and shelf life. However, for such a dependable staple, sourdough bread cultures and the mixture of microbes they contain have scarcely been characterized. Previous studies have looked at the composition of starter cultures from regions within Europe. But there has never been a comprehensive study of how the microbial diversity of sourdough starters varies across and between continents. To investigate this, Landis, Oliverio et al. used genetic sequencing to characterize the microbial communities of sourdough starters from the homes of 500 bread bakers in North America, Europe and Australasia. Bread makers often think their bread's unique qualities are due to the local environment of where the sourdough starter was made. However, Landis, Oliverio et al. found that geographical location did not correlate with the diversity of the starter cultures studied. The data revealed that a group of microbes called acetic acid bacteria, which had been overlooked in past research, were relatively common in starter cultures. Moreover, starters with a greater abundance of this group of bacteria produced bread with a strong vinegar aroma and caused dough to rise at a slower rate. This research demonstrates which species of bacteria and yeast are most commonly found in sourdough starters, and suggests geographical location has little influence on the microbial diversity of these cultures. Instead, the diversity of microbes likely depends more on how the starter culture was made and how it is maintained over time.


Asunto(s)
Bacterias/metabolismo , Pan/microbiología , Microbiología de Alimentos , Microbiota , Ácido Acético/metabolismo
19.
Nat Microbiol ; 6(1): 87-102, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33139882

RESUMEN

Microbial interactions are expected to be major determinants of microbiome structure and function. Although fungi are found in diverse microbiomes, their interactions with bacteria remain largely uncharacterized. In this work, we characterize interactions in 16 different bacterial-fungal pairs, examining the impacts of 8 different fungi isolated from cheese rind microbiomes on 2 bacteria (Escherichia coli and a cheese-isolated Pseudomonas psychrophila). Using random barcode transposon-site sequencing with an analysis pipeline that allows statistical comparisons between different conditions, we observed that fungal partners caused widespread changes in the fitness of bacterial mutants compared to growth alone. We found that all fungal species modulated the availability of iron and biotin to bacterial species, which suggests that these may be conserved drivers of bacterial-fungal interactions. Species-specific interactions were also uncovered, a subset of which suggested fungal antibiotic production. Changes in both conserved and species-specific interactions resulted from the deletion of a global regulator of fungal specialized metabolite production. This work highlights the potential for broad impacts of fungi on bacterial species within microbiomes.


Asunto(s)
Escherichia coli/genética , Hongos/metabolismo , Aptitud Genética/genética , Interacciones Microbianas/fisiología , Pseudomonas/genética , Biotina/metabolismo , Queso/microbiología , Código de Barras del ADN Taxonómico , Aptitud Genética/fisiología , Genoma Bacteriano/genética , Ensayos Analíticos de Alto Rendimiento , Hierro/metabolismo , Microbiota/genética , Microbiota/fisiología
20.
Environ Microbiol ; 22(11): 4745-4760, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32869420

RESUMEN

In vitro studies in plant, soil, and human systems have shown that microbial volatiles can mediate microbe-microbe or microbe-host interactions. These previous studies have often used artificially high concentrations of volatiles compared to in situ systems and have not demonstrated the roles volatiles play in mediating community-level dynamics. We used the notoriously volatile cheese rind microbiome to identify bacteria responsive to volatiles produced by five widespread cheese fungi. Vibrio casei had the strongest growth stimulation when exposed to all fungi. In multispecies community experiments, fungal volatiles caused a shift to a Vibrio-dominated community, potentially explaining the widespread occurrence of Vibrio in surface-ripened cheeses. RNA sequencing identified activation of the glyoxylate shunt as a possible mechanism underlying volatile-mediated growth promotion and community assembly. Our study demonstrates how airborne chemicals could be used to control the composition of microbiomes and illustrates how volatiles may impact the development of cheese rinds.


Asunto(s)
Queso/microbiología , Hongos/metabolismo , Microbiota , Compuestos Orgánicos Volátiles/metabolismo , Bacterias/clasificación , Bacterias/genética , Bacterias/crecimiento & desarrollo , Bacterias/metabolismo , Queso/análisis , Glioxilatos/metabolismo , Interacciones Microbianas , Microbiota/genética , Vibrio/genética , Vibrio/crecimiento & desarrollo , Vibrio/metabolismo , Compuestos Orgánicos Volátiles/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA