Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Ecol Evol ; 10(5): 2579-2587, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32185003

RESUMEN

Climate change is expected to create novel environments in which extant species cannot persist, therefore leading to the loss of them and their associated ecological functions within the ecosystem. However, animals may employ behavioral mechanisms in response to warming that could allow them to maintain their functional roles in an ecosystem despite changed temperatures. Specifically, animals may shift their activity in space or time to make use of thermal heterogeneity on the landscape. However, few studies consider the role of behavioral plasticity and spatial or temporal heterogeneity in mitigating the effects of climate change. We conducted experiments to evaluate the potential importance of behavior in mediating the net effects of warming on white-tailed deer (Odocoileus virginianus). We used shade structures to manipulate the thermal environment around feeding stations to monitor deer feeding activity and measure total consumption. In individual experiments where deer only had access to unshaded feeders, deer fed less during the day but compensated by increasing feeding during times when temperature was lower. In group experiments where deer had access to both shaded and unshaded feeders, deer often fed during the day but disproportionally preferred the cooler, shaded feeders. Our results suggest that deer can capitalize on temporal and spatial heterogeneity in the thermal environment to meet nutritional and thermal requirements, demonstrating the importance of behavioral plasticity when predicting the net effects of climate change.

3.
Yale J Biol Med ; 91(4): 471-480, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30588212

RESUMEN

While average global temperatures are increasing, a disproportionate amount of warming can be attributed to increasing nighttime temperatures rather than increasing daytime temperatures. Theory predicts that the timing of warming can generate different effects on organisms and their interactions within ecosystems. This occurs because an organism's response to warming depends on the current temperature. For example, warming when temperatures are low may have positive effects on an organism, while warming when temperatures are already high may have negative effects on an organism. Most field experiments that examine the ecological effects of climate warming employ warming methodologies that disproportionately elevate daytime warming treatments. The bias towards daytime warming treatments may arise because daytime temperatures can be manipulated with relatively simple and inexpensive technology that capitalizes on solar energy, such as open-top chambers that create a "greenhouse effect" or shade structures that reduce temperatures. However, these popular methods are ineffective when solar radiation is absent, and thus do not create warming treatments that accurately mimic the temporal patterns of climate warming. To encourage the investigation of nighttime warming's effect on ecosystems, we discuss why daytime and nighttime warming may have different effects on organisms, then present a review of methods that can be employed to elevate nighttime temperature in terrestrial field experiments. For each method, we offer a brief explanation, an evaluation of its pros and cons, and citations for further reference, as well as empirical data when possible. While some are impractical, we attempt to provide a comprehensive list of potential nighttime warming methods in hopes of stimulating ideas and discussions.


Asunto(s)
Ecología , Ecosistema , Clima , Calentamiento Global , Humanos , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...