RESUMEN
Epigenetic regulation is essential for the maintenance of the hematopoietic system, and its deregulation is implicated in hematopoietic disorders. In this study, UTX, a demethylase for lysine 27 on histone H3 (H3K27) and a component of COMPASS-like and SWI/SNF complexes, played an essential role in the hematopoietic system by globally regulating aging-associated genes. Utx-deficient (UtxΔ/Δ) mice exhibited myeloid skewing with dysplasia, extramedullary hematopoiesis, impaired hematopoietic reconstituting ability, and increased susceptibility to leukemia, which are the hallmarks of hematopoietic aging. RNA-sequencing (RNA-seq) analysis revealed that Utx deficiency converted the gene expression profiles of young hematopoietic stem-progenitor cells (HSPCs) to those of aged HSPCs. Utx expression in hematopoietic stem cells declined with age, and UtxΔ/Δ HSPCs exhibited increased expression of an aging-associated marker, accumulation of reactive oxygen species, and impaired repair of DNA double-strand breaks. Pathway and chromatin immunoprecipitation analyses coupled with RNA-seq data indicated that UTX contributed to hematopoietic homeostasis mainly by maintaining the expression of genes downregulated with aging via demethylase-dependent and -independent epigenetic programming. Of note, comparison of pathway changes in UtxΔ/Δ HSPCs, aged muscle stem cells, aged fibroblasts, and aged induced neurons showed substantial overlap, strongly suggesting common aging mechanisms among different tissue stem cells.
Asunto(s)
Envejecimiento/genética , Regulación de la Expresión Génica/genética , Hematopoyesis/genética , Sistema Hematopoyético/fisiología , Código de Histonas/genética , Histona Demetilasas/fisiología , Animales , Senescencia Celular/genética , Roturas del ADN de Doble Cadena , Reparación del ADN , Femenino , Predisposición Genética a la Enfermedad , Hematopoyesis Extramedular , Histona Demetilasas/deficiencia , Histona Demetilasas/genética , Reconstitución Inmune , Histona Demetilasas con Dominio de Jumonji/metabolismo , Leucemia Experimental/genética , Leucemia Experimental/virología , Masculino , Ratones , Ratones Noqueados , Virus de la Leucemia Murina de Moloney/fisiología , Células Mieloides/patología , Quimera por Radiación , Especies Reactivas de Oxígeno/metabolismo , Proteínas Recombinantes/metabolismo , Factores de Transcripción/metabolismo , Integración ViralRESUMEN
Chronic myelomonocytic leukemia (CMML) is a hematological malignancy characterized by uncontrolled proliferation of dysplastic myelomonocytes and frequent progression to acute myeloid leukemia (AML). We identified mutations in the Cbl gene, which encodes a negative regulator of cytokine signaling, in a subset of CMML patients. To investigate the contribution of mutant Cbl in CMML pathogenesis, we generated conditional knockin mice for Cbl that express wild-type Cbl in a steady state and inducibly express CblQ367P , a CMML-associated Cbl mutant. CblQ367P mice exhibited sustained proliferation of myelomonocytes, multilineage dysplasia, and splenomegaly, which are the hallmarks of CMML. The phosphatidylinositol 3-kinase (PI3K)-AKT and JAK-STAT pathways were constitutively activated in CblQ367P hematopoietic stem cells, which promoted cell cycle progression and enhanced chemokine-chemokine receptor activity. Gem, a gene encoding a GTPase that is upregulated by CblQ367P , enhanced hematopoietic stem cell activity and induced myeloid cell proliferation. In addition, Evi1, a gene encoding a transcription factor, was found to cooperate with CblQ367P and progress CMML to AML. Furthermore, targeted inhibition for the PI3K-AKT and JAK-STAT pathways efficiently suppressed the proliferative activity of CblQ367P -bearing CMML cells. Our findings provide insights into the molecular mechanisms underlying mutant Cbl-induced CMML and propose a possible molecular targeting therapy for mutant Cbl-carrying CMML patients.
Asunto(s)
Ciclo Celular , Células Madre Hematopoyéticas , Leucemia Mielógena Crónica BCR-ABL Positiva , Mutación Missense , Mielopoyesis , Proteínas Proto-Oncogénicas c-cbl , Regulación hacia Arriba , Sustitución de Aminoácidos , Animales , Regulación Enzimológica de la Expresión Génica , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/patología , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/metabolismo , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Ratones , Ratones Transgénicos , Monocitos/metabolismo , Monocitos/patología , Proteínas de Unión al GTP Monoméricas/biosíntesis , Proteínas de Unión al GTP Monoméricas/genética , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-cbl/biosíntesis , Proteínas Proto-Oncogénicas c-cbl/genética , Transducción de SeñalRESUMEN
Polycomb repressive complex 2 (PRC2) catalyzes the monomethylation, dimethylation, and trimethylation of histone H3 Lys27 (H3K27) and acts as a central epigenetic regulator that marks the repressive chromatin domain. Embryonic ectoderm development (EED), an essential component of PRC2, interacts with trimethylated H3K27 (H3K27me3) through the aromatic cage structure composed of its three aromatic amino acids, Phe97, Trp364, and Tyr365. This interaction allosterically activates the histone methyltransferase activity of PRC2 and thereby propagates repressive histone marks. In this study, we report the analysis of knock-in mice harboring the myeloid disorder-associated EED Ile363Met (I363M) mutation, analogous to the EED aromatic cage mutants. The I363M homozygotes displayed a remarkable and preferential reduction of H3K27me3 and died at midgestation. The heterozygotes increased the clonogenic capacity and bone marrow repopulating activity of hematopoietic stem/progenitor cells (HSPCs) and were susceptible to leukemia. Lgals3, a PRC2 target gene encoding a multifunctional galactose-binding lectin, was derepressed in I363M heterozygotes, which enhanced the stemness of HSPCs. Thus, our work provides in vivo evidence that the structural integrity of EED to H3K27me3 propagation is critical, especially for embryonic development and hematopoietic homeostasis, and that its perturbation increases the predisposition to hematologic malignancies.
Asunto(s)
Galectina 3/genética , Leucemia/genética , Complejo Represivo Polycomb 2/química , Animales , Desarrollo Embrionario/genética , Epigénesis Genética/genética , Galectina 3/química , Predisposición Genética a la Enfermedad , Células Madre Hematopoyéticas/química , Células Madre Hematopoyéticas/metabolismo , N-Metiltransferasa de Histona-Lisina/química , N-Metiltransferasa de Histona-Lisina/genética , Humanos , Ratones , Complejo Represivo Polycomb 2/genéticaRESUMEN
The c-Myb transcription factor is a major regulator that controls differentiation and proliferation of hematopoietic progenitor cells, which is frequently deregulated in hematological diseases, such as lymphoma and leukemia. Understanding of the mechanisms regulating the transcription of c-myb gene is challenging as it lacks a typical promoter and multiple factors are involved. Our previous studies identified some distal regulatory elements in the upstream regions of c-myb gene in murine myeloid progenitor M1 cells, but the detailed mechanisms still remain unclear. In the present study, we found that a cell differentiation-related DNase1 hypersensitive site is located at a -28k region upstream of c-myb gene and that transcription factors Hoxa9, Meis1 and PU.1 bind to the -28k region. Circular chromosome conformation capture (4C) assay confirmed the interaction between the -28k region and the c-myb promoter, which is supported by the enrichment of CTCF and Cohesin. Our analysis also points to a critical role for Hoxa9 and PU.1 in distal regulation of c-myb expression in murine myeloid cells and cell differentiation. Overexpression of Hoxa9 disrupted the IL-6-induced differentiation of M1 cells and upregulated c-myb expression through binding of the -28k region. Taken together, our results provide an evidence for critical role of the -28k region in distal regulatory mechanism for c-myb gene expression during differentiation of myeloid progenitor M1 cells.
Asunto(s)
Regulación Leucémica de la Expresión Génica , Proteínas de Homeodominio/genética , Interleucina-6/farmacología , Células Progenitoras Mieloides/efectos de los fármacos , Proteínas Proto-Oncogénicas c-myb/genética , Proteínas Proto-Oncogénicas/genética , Transactivadores/genética , Animales , Sitios de Unión , Factor de Unión a CCCTC , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/inmunología , Diferenciación Celular , Línea Celular Tumoral , Proliferación Celular , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/inmunología , Desoxirribonucleasa I/genética , Desoxirribonucleasa I/inmunología , Proteínas de Homeodominio/inmunología , Ratones , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide , Células Progenitoras Mieloides/inmunología , Células Progenitoras Mieloides/patología , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/inmunología , Regiones Promotoras Genéticas , Unión Proteica , Proteínas Proto-Oncogénicas/inmunología , Proteínas Proto-Oncogénicas c-myb/inmunología , Proteínas Represoras/genética , Proteínas Represoras/inmunología , Transducción de Señal , Transactivadores/inmunología , CohesinasRESUMEN
Polycomb repressive complex 2 (PRC2) participates in transcriptional repression through methylation of histone H3K27. The WD-repeat protein embryonic ectoderm development (EED) is a non-catalytic but an essential component of PRC2 and its mutations were identified in hematopoietic malignancies. To clarify the role(s) of EED in adult hematopoiesis and leukemogenesis, we generated Eed conditional knockout (Eed(Δ/Δ)) mice. Eed(Δ/Δ) mice died in a short period with rapid decrease of hematopoietic cells. Hematopoietic stem/progenitor cells (HSPCs) were markedly decreased with impaired bone marrow (BM) repopulation ability. Cell cycle analysis of HSPCs demonstrated increased S-phase fraction coupled with suppressed G0/G1 entry. Genes encoding cell adhesion molecules are significantly enriched in Eed(Δ/Δ) HSPCs, and consistently, Eed(Δ/Δ) HSPCs exhibited increased attachment to a major extracellular matrix component, fibronectin. Thus, EED deficiency increases proliferation on one side but promotes quiescence possibly by enhanced adhesion to the hematopoietic niche on the other, and these conflicting events would lead to abnormal differentiation and functional defect of Eed(Δ/Δ) HSPCs. In addition, Eed haploinsufficiency induced hematopoietic dysplasia, and Eed heterozygous mice were susceptible to malignant transformation and developed leukemia in cooperation with Evi1 overexpression. Our results demonstrated differentiation stage-specific and dose-dependent roles of EED in normal hematopoiesis and leukemogenesis.
Asunto(s)
Haploinsuficiencia , Hematopoyesis , Leucemia/metabolismo , Complejo Represivo Polycomb 2/genética , Complejo Represivo Polycomb 2/fisiología , Animales , Antígenos CD34/metabolismo , Adhesión Celular , Ciclo Celular , Diferenciación Celular , Proliferación Celular , Transformación Celular Neoplásica , Matriz Extracelular/metabolismo , Femenino , Sangre Fetal/citología , Fibronectinas/química , Fibronectinas/metabolismo , Citometría de Flujo , Técnicas de Transferencia de Gen , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/metabolismo , Células Madre Hematopoyéticas/citología , Heterocigoto , Histonas , Leucemia/genética , Masculino , Ratones , Ratones Endogámicos C57BL , ARN Interferente Pequeño/metabolismoRESUMEN
E2A-PBX1 is a chimeric gene product detected in t(1;19)-bearing acute lymphoblastic leukemia (ALL) with B-cell lineage. To investigate the leukemogenic process, we generated conditional knock-in (cKI) mice for E2A-PBX1, in which E2A-PBX1 is inducibly expressed under the control of the endogenous E2A promoter. Despite the induced expression of E2A-PBX1, no hematopoietic disease was observed, strongly suggesting that additional genetic alterations are required to develop leukemia. To address this possibility, retroviral insertional mutagenesis was used. Virus infection efficiently induced T-cell, B-cell, and biphenotypic ALL in E2A-PBX1 cKI mice. Inverse PCR identified eight retroviral common integration sites, in which enhanced expression was observed in the Gfi1, Mycn, and Pim1 genes. In addition, it is of note that viral integration and overexpression of the Zfp521 gene was detected in one tumor with B-cell lineage; we previously identified Zfp521 as a cooperative gene with E2A-HLF, another E2A-involving fusion gene with B-lineage ALL. The cooperative oncogenicity of E2A-PBX1 with overexpressed Zfp521 in B-cell tumorigenesis was indicated by the finding that E2A-PBX1 cKI, Zfp521 transgenic compound mice developed B-lineage ALL. Moreover, upregulation of ZNF521, the human counterpart of Zfp521, was found in several human leukemic cell lines bearing t(1;19). These results indicate that E2A-PBX1 cooperates with additional gene alterations to develop ALL. Among them, enhanced expression of ZNF521 may play a clinically relevant role in E2A fusion genes to develop B-lineage ALL.
Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas de Unión al ADN/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Animales , Linfocitos B/metabolismo , Linfocitos B/patología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Línea Celular Tumoral , Transformación Celular Neoplásica , Proteínas de Unión al ADN/genética , Modelos Animales de Enfermedad , Técnicas de Sustitución del Gen , Humanos , Ratones , Mutagénesis Insercional , Factor de Transcripción 1 de la Leucemia de Células Pre-B , Regiones Promotoras Genéticas/genética , Proteínas Proto-Oncogénicas/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Factores de Transcripción/genéticaRESUMEN
We previously reported that deficiency for Samd9L, which was cloned as a candidate gene for -7/7q- syndrome, accelerated leukemia cooperatively with enhanced expression of a histone demethylase: F-box and leucine-rich repeat protein 10 (Fbxl10, also known as Jhdm1b, Kdm2b, and Ndy1). To further investigate the role of Fbxl10 in leukemogenesis, we generated transgenic (Tg) mice that overexpress Fbxl10 in hematopoietic stem cells (HSCs). Interestingly, Fbxl10 Tg mice developed myeloid or B-lymphoid leukemia with complete penetrance. HSCs from the Tg mice exhibited an accelerated G0/G1-to-S transition with a normal G0 to G1 entry, resulting in pleiotropic progenitor cell expansion. Fbxl10 Tg HSCs displayed enhanced expression of neuron-specific gene family member 2 (Nsg2), and forced expression of Nsg2 in primary bone marrow cells resulted in expansion of immature cells. In addition, the genes involved in mitochondrial oxidative phosphorylation were markedly enriched in Fbxl10 Tg HSCs, coupled with increased cellular adenosine 5'-triphosphate levels. Moreover, chromatin immunoprecipitation followed by sequencing analysis demonstrated that Fbxl10 directly binds to the regulatory regions of Nsg2 and oxidative phosphorylation genes. These findings define Fbxl10 as a bona fide oncogene, whose deregulated expression contributes to the development of leukemia involving metabolic proliferative advantage and Nsg2-mediated impaired differentiation.
Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas F-Box/genética , Células Madre Hematopoyéticas/metabolismo , Histona Demetilasas con Dominio de Jumonji/genética , Leucemia/genética , Leucemia/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Animales , Linfocitos B/patología , Proteínas Portadoras/genética , Diferenciación Celular/genética , Proliferación Celular/genética , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Proteínas F-Box/metabolismo , Histona Demetilasas con Dominio de Jumonji/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Células Mieloides/patología , Proteínas del Tejido Nervioso/genética , Oncogenes , Regulación hacia Arriba/genéticaRESUMEN
Homeostasis of hematopoietic stem and progenitor cells is a tightly regulated process. The disturbance of the balance in the hematopoietic progenitor pool can result in favorable conditions for development of diseases such as myelodysplastic syndromes and leukemia. It has been shown recently that mice lacking p15Ink4b have skewed differentiation of common myeloid progenitors toward the myeloid lineage at the expense of erythroid progenitors. The lack of p15INK4B expression in human leukemic blasts has been linked to poor prognosis and increased risk of myelodysplastic syndromes transformation to acute myeloid leukemia. However, the role of p15Ink4b in disease development is just beginning to be elucidated. This study examines the collaboration of the loss of p15Ink4b with Nup98-HoxD13 translocation in the development of hematological malignancies in a mouse model. Here, we report that loss of p15Ink4b collaborates with Nup98-HoxD13 transgene in the development of predominantly myeloid neoplasms, namely acute myeloid leukemia, myeloproliferative disease, and myelodysplastic syndromes. This mouse model could be a very valuable tool for studying p15Ink4b function in tumorigenesis as well as preclinical drug testing.
Asunto(s)
Inhibidor p15 de las Quinasas Dependientes de la Ciclina/genética , Proteínas de Homeodominio/genética , Leucemia Mieloide/genética , Síndromes Mielodisplásicos/genética , Proteínas de Complejo Poro Nuclear/genética , Factores de Transcripción/genética , Enfermedad Aguda , Animales , Médula Ósea/metabolismo , Médula Ósea/patología , Complejo CD3/metabolismo , Proliferación Celular , Inhibidor p15 de las Quinasas Dependientes de la Ciclina/deficiencia , Progresión de la Enfermedad , Inmunohistoquímica , Leucemia Mieloide/metabolismo , Leucemia Mieloide/patología , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Síndromes Mielodisplásicos/metabolismo , Síndromes Mielodisplásicos/patología , Proteínas de Complejo Poro Nuclear/metabolismo , Proteínas de Fusión Oncogénica/genética , Bazo/metabolismo , Bazo/patología , Análisis de SupervivenciaRESUMEN
The BCL6 gene, which is expressed in certain B- and T-cell human lymphomas, is involved with chromosomal rearrangements and mutations in a number of these neoplasms. Lymphomagenesis is believed to evolve through a multi-step accumulation of genetic alterations in these tumors. We used retroviral insertional mutagenesis in transgenic mice expressing the human BCL6 transgene in order to identify genes that cooperate with BCL6 during lymphomatous transformation. We previously reported PIM1 as the most frequently recurring cooperating gene in this model. We now report three newly identified cooperating genes-GFI1B, EVI5, and MYB-that we identified in the lymphomas of retroviral-injected BCL6 transgenic mice (but not in retroviral-injected non-transgenic controls); mRNA and protein expression of GFI1B and EVI5 were decreased in the murine tumors, whereas MYB mRNA and protein expression were increased or decreased. These findings correlated with protein expression in human lymphomas, both B- and T-cell. Improved therapy of lymphomas may necessitate the development of combinations of drugs that target the alterations specific to each neoplasm.
Asunto(s)
Proteínas de Unión al ADN/genética , Regulación Neoplásica de la Expresión Génica , Linfoma de Células B/genética , Linfoma de Células T/genética , Proteínas Oncogénicas v-myb/genética , Proteínas Proto-Oncogénicas/genética , Proteínas Represoras/genética , Factores de Transcripción/genética , Animales , Proteínas de Ciclo Celular , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Proteínas de Unión al ADN/metabolismo , Femenino , Proteínas Activadoras de GTPasa , Vectores Genéticos , Humanos , Inmunohistoquímica , Linfoma de Células B/metabolismo , Linfoma de Células B/patología , Linfoma de Células T/metabolismo , Linfoma de Células T/patología , Masculino , Ratones , Ratones Transgénicos , Proteínas Oncogénicas v-myb/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-bcl-6 , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Represoras/metabolismo , Retroviridae/genética , Transducción de Señal , Factores de Transcripción/metabolismoRESUMEN
c-Myb plays an essential role in regulation of properly balanced hematopoiesis through transcriptional regulation of genes directly controlling cellular processes such as proliferation, differentiation, and apoptosis. The transcriptional activity and protein levels of c-Myb are strictly controlled through post-translational modifications such as phosphorylation, acetylation, ubiquitination, and SUMOylation. Conjugation of small ubiquitin-like modifier (SUMO) proteins has been shown to suppress the transcriptional activity of c-Myb. SUMO-1 modifies c-Myb under physiological conditions, whereas SUMO-2/3 conjugation was reported in cells under stress. Because stress also activates several cellular protein kinases, we investigated whether phosphorylation of c-Myb changes in stressed cells and whether a mutual interplay exists between phosphorylation and SUMOylation of c-Myb. Here we show that several types of environmental stress induce a rapid change in c-Myb phosphorylation. Interestingly, the phosphorylation of Thr(486), located in close proximity to SUMOylation site Lys(499) of c-Myb, is detected preferentially in nonSUMOylated protein and has a negative effect on stress-induced SUMOylation of c-Myb. Stress-activated p38 MAPKs phosphorylate Thr(486) in c-Myb, attenuate its SUMOylation, and increase its proteolytic turnover. Stressed cells expressing a phosphorylation-deficient T486A mutant demonstrate decreased expression of c-Myb target genes Bcl-2 and Bcl-xL and accelerated apoptosis because of increased SUMOylation of the mutant protein. These results suggest that phosphorylation-dependent modulation of c-Myb SUMOylation may be important for proper response of cells to stress. In summary, we have identified a novel regulatory interplay between phosphorylation and SUMOylation of c-Myb that regulates its activity in stressed cells.
Asunto(s)
Proteínas Proto-Oncogénicas c-myb/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Estrés Fisiológico/fisiología , Sumoilación/fisiología , Ubiquitinas/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Sustitución de Aminoácidos , Animales , Apoptosis/fisiología , Células COS , Chlorocebus aethiops , Humanos , Ratones , Mutación Missense , Fosforilación/fisiología , Proteínas Proto-Oncogénicas c-myb/genética , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética , Treonina , Ubiquitinas/genética , Ubiquitinas/fisiología , Proteína bcl-X/genética , Proteína bcl-X/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/genéticaRESUMEN
Monosomy 7 and interstitial deletion of 7q (-7/7q-) are well-recognized nonrandom chromosomal abnormalities frequently found among patients with myelodysplastic syndromes (MDSs) and myeloid leukemias. We previously identified candidate myeloid tumor suppressor genes (SAMD9, SAMD9-like = SAMD9L, and Miki) in the 7q21.3 subband. We established SAMD9L-deficient mice and found that SAMD9L(+/-) mice as well as SAMD9L(-/-) mice develop myeloid diseases resembling human diseases associated with -7/7q-. SAMD9L-deficient hematopoietic stem cells showed enhanced colony formation potential and in vivo reconstitution ability. SAMD9L localizes in early endosomes. SAMD9L-deficient cells showed delays in homotypic endosome fusion, resulting in persistence of ligand-bound cytokine receptors. These findings suggest that haploinsufficiency of SAMD9L and/or SAMD9 gene(s) contributes to myeloid transformation.
Asunto(s)
Deleción Cromosómica , Haploinsuficiencia , Leucemia Mieloide/genética , Síndromes Mielodisplásicos/genética , Proteínas Supresoras de Tumor/genética , Animales , Cromosomas Humanos Par 7 , Endosomas/metabolismo , Endosomas/patología , Orden Génico , Marcación de Gen , Células Madre Hematopoyéticas/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular , Leucemia Experimental , Leucemia Mieloide/diagnóstico , Leucemia Mieloide/mortalidad , Ratones , Ratones Noqueados , Virus de la Leucemia Murina de Moloney/patogenicidad , Síndromes Mielodisplásicos/diagnóstico , Síndromes Mielodisplásicos/mortalidad , Proteínas/genética , Proteínas/metabolismo , Infecciones por Retroviridae/genética , Proteínas Supresoras de Tumor/deficiencia , Infecciones Tumorales por Virus/genéticaRESUMEN
CIZ1 is a nuclear protein involved in DNA replication and is also implicated in human diseases including cancers. To gain an insight into its function in vivo, we generated mice lacking Ciz1. Ciz1-deficient (Ciz1(-/-)) mice grew without any obvious abnormalities, and Ciz1(-/-) mouse embryonic fibroblasts (MEFs) did not show any defects in cell cycle status, cell growth, and DNA damage response. However, Ciz1(-/-) MEFs were sensitive to hydroxyurea-mediated replication stress and susceptible to oncogene-induced cellular transformation. In addition, Ciz1(-/-) mice developed various types of leukemias by retroviral insertional mutagenesis. These results indicate that CIZ1 functions as a tumor suppressor in vivo.
Asunto(s)
Proteínas Nucleares/fisiología , Proteínas Supresoras de Tumor , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proliferación Celular , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Células Cultivadas , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Embrión de Mamíferos/citología , Fibroblastos/metabolismo , Fibroblastos/fisiología , Ratones , Ratones Noqueados , Modelos Biológicos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Unión Proteica , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Proteínas Supresoras de Tumor/fisiologíaRESUMEN
Developmental processes, like blood formation, are orchestrated by transcriptional networks. Those transcriptional networks are highly responsive to various environmental stimuli and affect common precursors resulting in increased production of cells of the erythroid lineage or myeloid lineage (granulocytes, neutrophils, and macrophages). A significant body of knowledge has accumulated describing transcription factors that drive differentiation of these two major cellular pathways, in particular the antagonistic master regulators such as GATA-1 and PU.1. However, little is known about factors that work upstream of master regulators to enhance differentiation toward one lineage. These functions become especially important under various stress conditions like sudden loss of red blood cells or pathogen infection. This review describes recent studies that begin to provide evidence for such factors. An increased understanding of factors regulating cellular commitment will advance our understanding of the etiology of diseases like anemia, cancer, and possibly other blood related disorders.
Asunto(s)
Células Eritroides/citología , Células Mieloides/citología , Animales , Diferenciación Celular/fisiología , Linaje de la Célula , HumanosRESUMEN
The p15Ink4b gene is frequently hypermethylated in myeloid neoplasia and has been demonstrated to be a tumor suppressor. Since it is a member of the INK4b family of cyclin-dependent kinase inhibitors, it was initially presumed that its loss in leukemic blasts caused a dysregulation of the cell cycle. However, animal model experiments over the last several years have produced a very different picture of how p15Ink4b functions in hematopoietic cells and how its loss contributes to myelodysplastic syndrome and myeloid leukemia. It is clear now, that in early hematopoietic progenitors, p15Ink4b functions outside of its canonical role as a cell cycle inhibitor. Its functions are involved in signal transduction and influence the development of erythroid, monocytic and dendritic cells.
Asunto(s)
Inhibidor p15 de las Quinasas Dependientes de la Ciclina/genética , Células Eritroides/metabolismo , Células Mieloides/metabolismo , Animales , Inhibidor p15 de las Quinasas Dependientes de la Ciclina/metabolismo , Metilación de ADN , Células Dendríticas/metabolismo , Modelos Animales de Enfermedad , Eliminación de Gen , Humanos , Leucemia Mieloide Aguda/genética , Ratones , Síndromes Mielodisplásicos/genética , Neoplasias/genética , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismoRESUMEN
Retroviruses integrated into genomic DNA participate in long-range gene activation from as far away as several hundred kilobases. Hypotheses have been put forth to account for these phenomena, but data have not been provided to support a physical mechanism that explains long-range activation. In murine leukemia virus-induced myeloid leukemia in mice, integrated proviruses have been found upstream of c-myb in three regions, named Mml1, Mml2, and Mml3 (25, 50, and 70 kb upstream, respectively). The transcription factor c-Myb is an oncogene whose dysregulation and/or mutation can lead to human leukemia. We hypothesized that the murine c-myb upstream region contains regulatory elements accessed by the retrovirus. To identify regulatory sites in the murine c-myb upstream region, we looked by chromatin immunoprecipitation with microarray technology (ChIP-on-chip) for histone modifications implicating gene activation in normal cells. H3K4me3, H3K4me1, and H3K9/14ac were enriched at Mml1 and/or Mml2 in the myeloblastic cell line M1, which expresses c-myb. The enrichment of all of these histone marks decreased with differentiation-induced downregulation of the gene in M1 cells but increased and spread in tumor cells containing integrated provirus. Importantly, using chromosome conformation capture (3C)-quantitative PCR assays, interactions between the 5' region, including the promoter and all Mml sites (Mml1, Mml2, and Mml3), were detected due to DNA looping in M1 cells and tumor cells with provirus in Mml1, Mml2, or Mml3. Therefore, our study provides a new mechanism of retrovirus insertional mutagenesis whereby spatial chromatin organization allows distally located provirus, with its own enhancer elements, to access the 5' regulatory region of the gene.
Asunto(s)
Regulación de la Expresión Génica , Virus de la Leucemia Murina/genética , Proteínas Proto-Oncogénicas c-myb/genética , Células 3T3 , Animales , Diferenciación Celular , Línea Celular Tumoral , Cromatina/metabolismo , Inmunoprecipitación de Cromatina , ADN/metabolismo , Elementos de Facilitación Genéticos , Genes myb , Histonas/metabolismo , Ratones , Modelos Biológicos , Mutagénesis , Reacción en Cadena de la Polimerasa/métodos , Retroviridae/metabolismoAsunto(s)
Terapia Genética , Vectores Genéticos , Trasplante de Células Madre Hematopoyéticas , Retroviridae/genética , Técnicas de Transferencia de Gen , Terapia Genética/efectos adversos , Terapia Genética/ética , Terapia Genética/legislación & jurisprudencia , Vectores Genéticos/efectos adversos , Vectores Genéticos/genética , Humanos , Proyectos de InvestigaciónRESUMEN
The cAMP response element-binding protein (CREB) is a nuclear transcription factor that is critical for normal and neoplastic hematopoiesis. Previous studies have demonstrated that CREB is a proto-oncogene whose overexpression promotes cellular proliferation in hematopoietic cells. Transgenic mice that overexpress CREB in myeloid cells develop a myeloproliferative disease with splenomegaly and aberrant myelopoiesis. However, CREB overexpressing mice do not spontaneously develop acute myeloid leukemia. In this study, we used retroviral insertional mutagenesis to identify genes that accelerate leukemia in CREB transgenic mice. Our mutagenesis screen identified several integration sites, including oncogenes Gfi1, Myb, and Ras. The Sox4 transcription factor was identified by our screen as a gene that cooperates with CREB in myeloid leukemogenesis. We show that the transduction of CREB transgenic mouse bone marrow cells with a Sox4 retrovirus increases survival and self-renewal of cells in vitro. Furthermore, leukemic blasts from the majority of acute myeloid leukemia patients have higher CREB, phosphorylated CREB, and Sox 4 protein expression. Sox4 transduction of mouse bone marrow cells results in increased expression of CREB target genes. We also demonstrate that CREB is a direct target of Sox4 by chromatin immunoprecipitation assays. These results indicate that Sox4 and CREB cooperate and contribute to increased proliferation of hematopoietic progenitor cells.
Asunto(s)
Transformación Celular Neoplásica/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Células Mieloides/metabolismo , Factores de Transcripción SOXC/metabolismo , Animales , Células de la Médula Ósea/citología , Células de la Médula Ósea/metabolismo , Proliferación Celular , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Femenino , Células HL-60 , Humanos , Células K562 , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Células Mieloides/citología , Fosforilación/fisiología , Embarazo , Proto-Oncogenes Mas , Retroviridae/genéticaRESUMEN
The tumor suppressor p15Ink4b is frequently inactivated by methylation in acute myeloid leukemia and premalignant myeloid disorders. Dendritic cells (DCs) as potent APCs play critical regulatory roles in antileukemic immune responses. In the present study, we investigated whether p15Ink4b can function as modulator of DC development. The expression of p15Ink4b is induced strongly during differentiation and activation of DCs, and its loss resulted in significant quantitative and qualitative impairments of conventional DC (cDC) development. Accordingly, ex vivo-generated BM-derived DCs from p15Ink4b-knockout mice express significantly decreased levels of the antigen-presenting (MHC II) and costimulatory (CD80 and CD86) molecules and have impaired immunostimulatory functions, such as antigen uptake and T-cell stimulation. Reexpression of p15Ink4b in progenitors restored these defects, and confirmed a positive role for p15Ink4b during cDC differentiation and maturation. Furthermore, we have shown herein that p15Ink4b expression increases phosphorylation of Erk1/Erk2 kinases, which leads to an elevated activity of the PU.1 transcription factor. In conclusion, our results establish p15Ink4b as an important modulator of cDC development and implicate a novel function for this tumor suppressor in the regulation of adaptive immune responses.
Asunto(s)
Diferenciación Celular/genética , Inhibidor p15 de las Quinasas Dependientes de la Ciclina/fisiología , Células Dendríticas/fisiología , Inmunidad Adaptativa/genética , Animales , Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/fisiología , Células Cultivadas , Inhibidor p15 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p15 de las Quinasas Dependientes de la Ciclina/metabolismo , Metilación de ADN/fisiología , Células Dendríticas/metabolismo , Eliminación de Gen , Regulación de la Expresión Génica/inmunología , Regulación de la Expresión Génica/fisiología , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Regiones Promotoras Genéticas/fisiología , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Proteínas Supresoras de Tumor/fisiologíaRESUMEN
Patients with a t(9;11) translocation (MLL-AF9) develop acute myeloid leukemia (AML), and while in mice the expression of this fusion oncogene also results in the development of myeloid leukemia, it is with long latency. To identify mutations that cooperate with Mll-AF9, we infected neonatal wild-type (WT) or Mll-AF9 mice with a murine leukemia virus (MuLV). MuLV-infected Mll-AF9 mice succumbed to disease significantly faster than controls presenting predominantly with myeloid leukemia while infected WT animals developed predominantly lymphoid leukemia. We identified 88 candidate cancer genes near common sites of proviral insertion. Analysis of transcript levels revealed significantly elevated expression of Mn1, and a trend toward increased expression of Bcl11a and Fosb in Mll-AF9 murine leukemia samples with proviral insertions proximal to these genes. Accordingly, FOSB and BCL11A were also overexpressed in human AML harboring MLL gene translocations. FOSB was revealed to be essential for growth in mouse and human myeloid leukemia cells using shRNA lentiviral vectors in vitro. Importantly, MN1 cooperated with Mll-AF9 in leukemogenesis in an in vivo BM viral transduction and transplantation assay. Together, our data identified genes that define transcription factor networks and important genetic pathways acting during progression of leukemia induced by MLL fusion oncogenes.
Asunto(s)
Transformación Celular Neoplásica/genética , Redes Reguladoras de Genes/genética , Leucemia/genética , Mutagénesis Insercional , Proteína de la Leucemia Mieloide-Linfoide/fisiología , Proteínas de Fusión Oncogénica/fisiología , Animales , Animales Recién Nacidos , Células Cultivadas , Análisis Mutacional de ADN/métodos , Modelos Animales de Enfermedad , Células HEK293 , Humanos , Leucemia/patología , Ratones , Ratones Endogámicos C57BL , Mutagénesis Insercional/fisiología , Proteína de la Leucemia Mieloide-Linfoide/genética , Proteínas de Fusión Oncogénica/genética , Células U937RESUMEN
Diffuse large B-cell lymphomas in humans are associated with chromosomal rearrangements (â¼40%) and/or mutations disrupting autoregulation (â¼16%) involving the BCL6 gene. Studies of lymphoma development in humans and mouse models have indicated that lymphomagenesis evolves through the accumulation of multiple genetic alterations. Based on our prior studies, which indicated that carcinogen-induced DNA mutations enhance the incidence of lymphomas in our mouse model expressing a human BCL6 transgene, we hypothesized that mutated genes are likely to play an important cooperative role in BCL6-associated lymphoma development. We used retroviral insertional mutagenesis in an effort to identify which genes cooperate with BCL6 in lymphomagenesis in our BCL6 transgenic mice. We identified PIM1 as the most frequently recurring cooperating gene in our murine BCL6-associated lymphomas (T- and B-cell types), and we observed elevated levels of PIM1 mRNA and protein expression in these neoplasms. Further, immunohistochemical staining, which was performed in 20 randomly selected BCL6-positive human B- and T-cell lymphomas, revealed concurrent expression of BCL6 and PIM1 in these neoplasms. As PIM1 encodes a serine/threonine kinase, PIM1 kinase inhibition may be a promising therapy for BCL6/PIM1-positive human lymphomas.