Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Nat Commun ; 15(1): 5007, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38866767

RESUMEN

Polygenic scores (PGSs) offer the ability to predict genetic risk for complex diseases across the life course; a key benefit over short-term prediction models. To produce risk estimates relevant to clinical and public health decision-making, it is important to account for varying effects due to age and sex. Here, we develop a novel framework to estimate country-, age-, and sex-specific estimates of cumulative incidence stratified by PGS for 18 high-burden diseases. We integrate PGS associations from seven studies in four countries (N = 1,197,129) with disease incidences from the Global Burden of Disease. PGS has a significant sex-specific effect for asthma, hip osteoarthritis, gout, coronary heart disease and type 2 diabetes (T2D), with all but T2D exhibiting a larger effect in men. PGS has a larger effect in younger individuals for 13 diseases, with effects decreasing linearly with age. We show for breast cancer that, relative to individuals in the bottom 20% of polygenic risk, the top 5% attain an absolute risk for screening eligibility 16.3 years earlier. Our framework increases the generalizability of results from biobank studies and the accuracy of absolute risk estimates by appropriately accounting for age- and sex-specific PGS effects. Our results highlight the potential of PGS as a screening tool which may assist in the early prevention of common diseases.


Asunto(s)
Predisposición Genética a la Enfermedad , Herencia Multifactorial , Humanos , Masculino , Femenino , Herencia Multifactorial/genética , Incidencia , Persona de Mediana Edad , Adulto , Anciano , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/epidemiología , Factores de Riesgo , Medición de Riesgo/métodos , Carga Global de Enfermedades , Factores Sexuales , Factores de Edad
2.
Am J Hum Genet ; 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38908374

RESUMEN

Methods of estimating polygenic scores (PGSs) from genome-wide association studies are increasingly utilized. However, independent method evaluation is lacking, and method comparisons are often limited. Here, we evaluate polygenic scores derived via seven methods in five biobank studies (totaling about 1.2 million participants) across 16 diseases and quantitative traits, building on a reference-standardized framework. We conducted meta-analyses to quantify the effects of method choice, hyperparameter tuning, method ensembling, and the target biobank on PGS performance. We found that no single method consistently outperformed all others. PGS effect sizes were more variable between biobanks than between methods within biobanks when methods were well tuned. Differences between methods were largest for the two investigated autoimmune diseases, seropositive rheumatoid arthritis and type 1 diabetes. For most methods, cross-validation was more reliable for tuning hyperparameters than automatic tuning (without the use of target data). For a given target phenotype, elastic net models combining PGS across methods (ensemble PGS) tuned in the UK Biobank provided consistent, high, and cross-biobank transferable performance, increasing PGS effect sizes (ß coefficients) by a median of 5.0% relative to LDpred2 and MegaPRS (the two best-performing single methods when tuned with cross-validation). Our interactively browsable online-results and open-source workflow prspipe provide a rich resource and reference for the analysis of polygenic scoring methods across biobanks.

3.
Commun Biol ; 7(1): 432, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594418

RESUMEN

Trace elements are important for human health but may exert toxic or adverse effects. Mechanisms of uptake, distribution, metabolism, and excretion are partly under genetic control but have not yet been extensively mapped. Here we report a comprehensive multi-element genome-wide association study of 57 essential and non-essential trace elements. We perform genome-wide association meta-analyses of 14 trace elements in up to 6564 Scandinavian whole blood samples, and genome-wide association studies of 43 trace elements in up to 2819 samples measured only in the Trøndelag Health Study (HUNT). We identify 11 novel genetic loci associated with blood concentrations of arsenic, cadmium, manganese, selenium, and zinc in genome-wide association meta-analyses. In HUNT, several genome-wide significant loci are also indicated for other trace elements. Using two-sample Mendelian randomization, we find several indications of weak to moderate effects on health outcomes, the most precise being a weak harmful effect of increased zinc on prostate cancer. However, independent validation is needed. Our current understanding of trace element-associated genetic variants may help establish consequences of trace elements on human health.


Asunto(s)
Selenio , Oligoelementos , Masculino , Humanos , Oligoelementos/metabolismo , Estudio de Asociación del Genoma Completo , Zinc , Selenio/análisis , Manganeso
4.
Eur J Prev Cardiol ; 31(6): 644-654, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38007706

RESUMEN

AIMS: Hypertension is a major modifiable cause of morbidity and mortality that affects over 1 billion people worldwide. Blood pressure (BP) traits have a strong genetic component that can be quantified with polygenic risk scores (PRSs). To date, the performance of BP PRSs has mainly been assessed in adults, and less is known about polygenic hypertension risk in childhood. METHODS AND RESULTS: Multiple PRSs for systolic BP (SBP), diastolic BP (DBP), and pulse pressure were developed using either genome-wide significant weights, pruning and thresholding, or Bayesian regression. Among 87 total PRSs, the top performer for each trait was applied in independent cohorts of children and adult to assess genotype-phenotype associations and disease risk across the lifespan. Differences between those with low (1st decile), average (2nd-9th decile), and high (10th decile) PRS emerge in the first years of life and are maintained throughout adulthood. These diverging BP trajectories also seem to affect cardiovascular and renal disease risk, with increased risk observed among those in the top decile and reduced risk among those in the bottom decile of the polygenic risk distribution compared with the rest of the population. CONCLUSION: Genetic risk factors are associated with BP traits across the lifespan, beginning in the first years of life. Given the importance of exposure time in disease pathogenesis and the early rise in BP levels among those genetically susceptible, PRSs may help identify high-risk individuals prior to hypertension onset, facilitate primordial prevention, and reduce the burden of this public health challenge.


A high genetic risk of elevated blood pressure (BP) is associated with increased BP from early childhood and throughout the lifespan. Inherited predispositions also affect the risk of cardiovascular morbidity and mortality, yet this appears to be modified by the absence or presence of hypertension, indicating that genetic hypertension risk is not deterministic, and that controlling BP can and should be done across the polygenic risk distribution. Given that differences in BP emerge early in life as a function of genetic risk, polygenic risk scores have the potential to reduce the duration of exposure to high BP by identifying high-risk individuals from birth, and thereby attenuate lifelong disease risk.


Asunto(s)
Puntuación de Riesgo Genético , Hipertensión , Adulto , Niño , Humanos , Presión Sanguínea , Longevidad , Teorema de Bayes , Hipertensión/epidemiología , Predisposición Genética a la Enfermedad , Factores de Riesgo
5.
Nat Genet ; 55(11): 1831-1842, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37845353

RESUMEN

Abdominal aortic aneurysm (AAA) is a common disease with substantial heritability. In this study, we performed a genome-wide association meta-analysis from 14 discovery cohorts and uncovered 141 independent associations, including 97 previously unreported loci. A polygenic risk score derived from meta-analysis explained AAA risk beyond clinical risk factors. Genes at AAA risk loci indicate involvement of lipid metabolism, vascular development and remodeling, extracellular matrix dysregulation and inflammation as key mechanisms in AAA pathogenesis. These genes also indicate overlap between the development of AAA and other monogenic aortopathies, particularly via transforming growth factor ß signaling. Motivated by the strong evidence for the role of lipid metabolism in AAA, we used Mendelian randomization to establish the central role of nonhigh-density lipoprotein cholesterol in AAA and identified the opportunity for repurposing of proprotein convertase, subtilisin/kexin-type 9 (PCSK9) inhibitors. This was supported by a study demonstrating that PCSK9 loss of function prevented the development of AAA in a preclinical mouse model.


Asunto(s)
Aneurisma de la Aorta Abdominal , Estudio de Asociación del Genoma Completo , Humanos , Animales , Ratones , Proproteína Convertasa 9/genética , Proproteína Convertasa 9/metabolismo , Subtilisina , Proproteína Convertasas , Aneurisma de la Aorta Abdominal/genética
6.
Cell Genom ; 3(8): 100345, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37601974

RESUMEN

Stroke is the second leading cause of death and disability worldwide. Stroke prevalence varies by sex and ancestry, possibly due to genetic heterogeneity between subgroups. We performed a genome-wide meta-analysis of 16 biobanks across multiple ancestries to study the genetics of ischemic stroke (60,176 cases, 1,310,725 controls) as part of the Global Biobank Meta-analysis Initiative (GBMI) and further combined the results with previously published MegaStroke. Five novel loci for ischemic stroke (LAMC1, CALCRL, PLSCR1, CDKN1A, and SWAP70) were identified after replication in four additional datasets. One previously reported locus showed significant ancestry heterogeneity (ABO), and one showed significant sex heterogeneity (ALDH2). The ALDH2 association was male specific (males p = 1.67e-24, females p = 0.126) and was additionally observed only in the East Asian ancestry (male) samples. These findings emphasize the need for more diverse datasets with large sample sizes to further understand the genetic predisposition of stroke in different ancestry and sex groups.

7.
Cell Genom ; 3(1): 100241, 2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36777179

RESUMEN

Polygenic risk scores (PRSs) have been widely explored in precision medicine. However, few studies have thoroughly investigated their best practices in global populations across different diseases. We here utilized data from Global Biobank Meta-analysis Initiative (GBMI) to explore methodological considerations and PRS performance in 9 different biobanks for 14 disease endpoints. Specifically, we constructed PRSs using pruning and thresholding (P + T) and PRS-continuous shrinkage (CS). For both methods, using a European-based linkage disequilibrium (LD) reference panel resulted in comparable or higher prediction accuracy compared with several other non-European-based panels. PRS-CS overall outperformed the classic P + T method, especially for endpoints with higher SNP-based heritability. Notably, prediction accuracy is heterogeneous across endpoints, biobanks, and ancestries, especially for asthma, which has known variation in disease prevalence across populations. Overall, we provide lessons for PRS construction, evaluation, and interpretation using GBMI resources and highlight the importance of best practices for PRS in the biobank-scale genomics era.

8.
Circ Genom Precis Med ; 16(1): e003542, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36580301

RESUMEN

BACKGROUND: The 10-year Atherosclerotic Cardiovascular Disease risk score is the standard approach to predict risk of incident cardiovascular events, and recently, addition of coronary artery disease (CAD) polygenic scores has been evaluated. Although age and sex strongly predict the risk of CAD, their interaction with genetic risk prediction has not been systematically examined. This study performed an extensive evaluation of age and sex effects in genetic CAD risk prediction. METHODS: The population-based Norwegian HUNT2 (Trøndelag Health Study 2) cohort of 51 036 individuals was used as the primary dataset. Findings were replicated in the UK Biobank (372 410 individuals). Models for 10-year CAD risk were fitted using Cox proportional hazards, and Harrell concordance index, sensitivity, and specificity were compared. RESULTS: Inclusion of age and sex interactions of CAD polygenic score to the prediction models increased the C-index and sensitivity by accounting for nonadditive effects of CAD polygenic score and likely countering the observed survival bias in the baseline. The sensitivity for females was lower than males in all models including genetic information. We identified a total of 82.6% of incident CAD cases by using a 2-step approach: (1) Atherosclerotic Cardiovascular Disease risk score (74.1%) and (2) the CAD polygenic score interaction model for those in low clinical risk (additional 8.5%). CONCLUSIONS: These findings highlight the importance and complexity of genetic risk in predicting CAD. There is a need for modeling age- and sex-interaction terms with polygenic scores to optimize detection of individuals at high risk, those who warrant preventive interventions. Sex-specific studies are needed to understand and estimate CAD risk with genetic information.


Asunto(s)
Enfermedades Cardiovasculares , Enfermedad de la Arteria Coronaria , Masculino , Femenino , Humanos , Enfermedad de la Arteria Coronaria/epidemiología , Enfermedad de la Arteria Coronaria/genética , Enfermedad de la Arteria Coronaria/diagnóstico , Medición de Riesgo , Factores de Riesgo , Factores Sexuales
9.
Arterioscler Thromb Vasc Biol ; 43(1): 15-29, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36412195

RESUMEN

Cardiovascular disease is the most common cause of death worldwide, especially beyond the age of 65 years, with the vast majority of morbidity and mortality due to myocardial infarction and stroke. Vascular pathology stems from a combination of genetic risk, environmental factors, and the biologic changes associated with aging. The pathogenesis underlying the development of vascular aging, and vascular calcification with aging, in particular, is still not fully understood. Accumulating data suggests that genetic risk, likely compounded by epigenetic modifications, environmental factors, including diabetes and chronic kidney disease, and the plasticity of vascular smooth muscle cells to acquire an osteogenic phenotype are major determinants of age-associated vascular calcification. Understanding the molecular mechanisms underlying genetic and modifiable risk factors in regulating age-associated vascular pathology may inspire strategies to promote healthy vascular aging. This article summarizes current knowledge of concepts and mechanisms of age-associated vascular disease, with an emphasis on vascular calcification.


Asunto(s)
Enfermedades Cardiovasculares , Calcificación Vascular , Enfermedades Vasculares , Humanos , Calcificación Vascular/patología , Enfermedades Vasculares/genética , Enfermedades Vasculares/patología , Músculo Liso Vascular/patología , Enfermedades Cardiovasculares/patología , Miocitos del Músculo Liso/patología
10.
Nat Genet ; 54(12): 1803-1815, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36474045

RESUMEN

The discovery of genetic loci associated with complex diseases has outpaced the elucidation of mechanisms of disease pathogenesis. Here we conducted a genome-wide association study (GWAS) for coronary artery disease (CAD) comprising 181,522 cases among 1,165,690 participants of predominantly European ancestry. We detected 241 associations, including 30 new loci. Cross-ancestry meta-analysis with a Japanese GWAS yielded 38 additional new loci. We prioritized likely causal variants using functionally informed fine-mapping, yielding 42 associations with less than five variants in the 95% credible set. Similarity-based clustering suggested roles for early developmental processes, cell cycle signaling and vascular cell migration and proliferation in the pathogenesis of CAD. We prioritized 220 candidate causal genes, combining eight complementary approaches, including 123 supported by three or more approaches. Using CRISPR-Cas9, we experimentally validated the effect of an enhancer in MYO9B, which appears to mediate CAD risk by regulating vascular cell motility. Our analysis identifies and systematically characterizes >250 risk loci for CAD to inform experimental interrogation of putative causal mechanisms for CAD.


Asunto(s)
Enfermedad de la Arteria Coronaria , Humanos , Enfermedad de la Arteria Coronaria/genética , Estudio de Asociación del Genoma Completo
11.
Circulation ; 146(16): 1225-1242, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36154123

RESUMEN

BACKGROUND: Venous thromboembolism (VTE) is a life-threatening vascular event with environmental and genetic determinants. Recent VTE genome-wide association studies (GWAS) meta-analyses involved nearly 30 000 VTE cases and identified up to 40 genetic loci associated with VTE risk, including loci not previously suspected to play a role in hemostasis. The aim of our research was to expand discovery of new genetic loci associated with VTE by using cross-ancestry genomic resources. METHODS: We present new cross-ancestry meta-analyzed GWAS results involving up to 81 669 VTE cases from 30 studies, with replication of novel loci in independent populations and loci characterization through in silico genomic interrogations. RESULTS: In our genetic discovery effort that included 55 330 participants with VTE (47 822 European, 6320 African, and 1188 Hispanic ancestry), we identified 48 novel associations, of which 34 were replicated after correction for multiple testing. In our combined discovery-replication analysis (81 669 VTE participants) and ancestry-stratified meta-analyses (European, African, and Hispanic), we identified another 44 novel associations, which are new candidate VTE-associated loci requiring replication. In total, across all GWAS meta-analyses, we identified 135 independent genomic loci significantly associated with VTE risk. A genetic risk score of the significantly associated loci in Europeans identified a 6-fold increase in risk for those in the top 1% of scores compared with those with average scores. We also identified 31 novel transcript associations in transcriptome-wide association studies and 8 novel candidate genes with protein quantitative-trait locus Mendelian randomization analyses. In silico interrogations of hemostasis and hematology traits and a large phenome-wide association analysis of the 135 GWAS loci provided insights to biological pathways contributing to VTE, with some loci contributing to VTE through well-characterized coagulation pathways and others providing new data on the role of hematology traits, particularly platelet function. Many of the replicated loci are outside of known or currently hypothesized pathways to thrombosis. CONCLUSIONS: Our cross-ancestry GWAS meta-analyses identified new loci associated with VTE. These findings highlight new pathways to thrombosis and provide novel molecules that may be useful in the development of improved antithrombosis treatments.


Asunto(s)
Trombosis , Tromboembolia Venosa , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Genómica , Humanos , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Trombosis/genética , Tromboembolia Venosa/diagnóstico , Tromboembolia Venosa/genética
12.
Bioinformatics ; 38(18): 4337-4343, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-35876838

RESUMEN

MOTIVATION: In the genome-wide association analysis of population-based biobanks, most diseases have low prevalence, which results in low detection power. One approach to tackle the problem is using family disease history, yet existing methods are unable to address type I error inflation induced by increased correlation of phenotypes among closely related samples, as well as unbalanced phenotypic distribution. RESULTS: We propose a new method for genetic association test with family disease history, mixed-model-based Test with Adjusted Phenotype and Empirical saddlepoint approximation, which controls for increased phenotype correlation by adopting a two-variance-component mixed model, accounts for case-control imbalance by using empirical saddlepoint approximation, and is flexible to incorporate any existing adjusted phenotypes, such as phenotypes from the LT-FH method. We show through simulation studies and analysis of UK Biobank data of white British samples and the Korean Genome and Epidemiology Study of Korean samples that the proposed method is robust and yields better calibration compared to existing methods while gaining power for detection of variant-phenotype associations. AVAILABILITY AND IMPLEMENTATION: The summary statistics and code generated in this study are available at https://github.com/styvon/TAPE. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Estudio de Asociación del Genoma Completo/métodos , Estudios de Casos y Controles , Fenotipo , Simulación por Computador
13.
Cell Genom ; 2(10): 100192, 2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36777996

RESUMEN

Biobanks facilitate genome-wide association studies (GWASs), which have mapped genomic loci across a range of human diseases and traits. However, most biobanks are primarily composed of individuals of European ancestry. We introduce the Global Biobank Meta-analysis Initiative (GBMI)-a collaborative network of 23 biobanks from 4 continents representing more than 2.2 million consented individuals with genetic data linked to electronic health records. GBMI meta-analyzes summary statistics from GWASs generated using harmonized genotypes and phenotypes from member biobanks for 14 exemplar diseases and endpoints. This strategy validates that GWASs conducted in diverse biobanks can be integrated despite heterogeneity in case definitions, recruitment strategies, and baseline characteristics. This collaborative effort improves GWAS power for diseases, benefits understudied diseases, and improves risk prediction while also enabling the nomination of disease genes and drug candidates by incorporating gene and protein expression data and providing insight into the underlying biology of human diseases and traits.

14.
Cell Genom ; 2(10): 100193, 2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36777998

RESUMEN

The Trøndelag Health Study (HUNT) is a population-based cohort of ∼229,000 individuals recruited in four waves beginning in 1984 in Trøndelag County, Norway. Approximately 88,000 of these individuals have available genetic data from array genotyping. HUNT participants were recruited during four community-based recruitment waves and provided information on health-related behaviors, self-reported diagnoses, family history of disease, and underwent physical examinations. Linkage via the Norwegian personal identification number integrates digitized health care information from doctor visits and national health registries including death, cancer and prescription registries. Genome-wide association studies of HUNT participants have provided insights into the mechanism of cardiovascular, metabolic, osteoporotic, and liver-related diseases, among others. Unique features of this cohort that facilitate research include nearly 40 years of longitudinal follow-up in a motivated and well-educated population, family data, comprehensive phenotyping, and broad availability of DNA, RNA, urine, fecal, plasma, and serum samples.

16.
iScience ; 24(11): 103196, 2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34746691

RESUMEN

The rs58542926C >T (E167K) variant of the transmembrane 6 superfamily member 2 gene (TM6SF2) is associated with increased risks for nonalcoholic fatty liver disease (NAFLD) and type 2 diabetes (T2D). Nevertheless, the role of the TM6SF2 rs58542926 variant in glucose metabolism is poorly understood. We performed a sex-stratified analysis of the association between the rs58542926C >T variant and T2D in multiple cohorts. The E167K variant was significantly associated with T2D, especially in males. Using an E167K knockin (KI) mouse model, we found that male but not the female KI mice exhibited impaired glucose tolerance. As an ER membrane protein, TM6SF2 was found to interact with inositol-requiring enzyme 1 α (IRE1α), a primary ER stress sensor. The male Tm6sf2 KI mice exhibited impaired IRE1α signaling in the liver. In conclusion, the E167K variant of TM6SF2 is associated with glucose intolerance primarily in males, both in humans and mice.

17.
Am J Hum Genet ; 108(9): 1578-1589, 2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-34265237

RESUMEN

Thoracic aortic aneurysm (TAA) is characterized by dilation of the aortic root or ascending/descending aorta. TAA is a heritable disease that can be potentially life threatening. While 10%-20% of TAA cases are caused by rare, pathogenic variants in single genes, the origin of the majority of TAA cases remains unknown. A previous study implicated common variants in FBN1 with TAA disease risk. Here, we report a genome-wide scan of 1,351 TAA-affected individuals and 18,295 control individuals from the Cardiovascular Health Improvement Project and Michigan Genomics Initiative at the University of Michigan. We identified a genome-wide significant association with TAA for variants within the third intron of TCF7L2 following replication with meta-analysis of four additional independent cohorts. Common variants in this locus are the strongest known genetic risk factor for type 2 diabetes. Although evidence indicates the presence of different causal variants for TAA and type 2 diabetes at this locus, we observed an opposite direction of effect. The genetic association for TAA colocalizes with an aortic eQTL of TCF7L2, suggesting a functional relationship. These analyses predict an association of higher expression of TCF7L2 with TAA disease risk. In vitro, we show that upregulation of TCF7L2 is associated with BCL2 repression promoting vascular smooth muscle cell apoptosis, a key driver of TAA disease.


Asunto(s)
Aneurisma de la Aorta Torácica/genética , Diabetes Mellitus Tipo 2/genética , Células Endoteliales/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética , Sitios de Carácter Cuantitativo , Proteína 2 Similar al Factor de Transcripción 7/genética , Aorta/metabolismo , Aorta/patología , Aneurisma de la Aorta Torácica/metabolismo , Aneurisma de la Aorta Torácica/patología , Estudios de Casos y Controles , Caspasa 3/genética , Caspasa 3/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Células Endoteliales/patología , Regulación de la Expresión Génica , Genoma Humano , Estudio de Asociación del Genoma Completo , Humanos , Intrones , Michigan , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Mutación , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteína 2 Similar al Factor de Transcripción 7/metabolismo , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo
18.
Hum Mol Genet ; 30(21): 2027-2039, 2021 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-33961016

RESUMEN

Circulating cardiac troponin proteins are associated with structural heart disease and predict incident cardiovascular disease in the general population. However, the genetic contribution to cardiac troponin I (cTnI) concentrations and its causal effect on cardiovascular phenotypes are unclear. We combine data from two large population-based studies, the Trøndelag Health Study and the Generation Scotland Scottish Family Health Study, and perform a genome-wide association study of high-sensitivity cTnI concentrations with 48 115 individuals. We further use two-sample Mendelian randomization to investigate the causal effects of circulating cTnI on acute myocardial infarction (AMI) and heart failure (HF). We identified 12 genetic loci (8 novel) associated with cTnI concentrations. Associated protein-altering variants highlighted putative functional genes: CAND2, HABP2, ANO5, APOH, FHOD3, TNFAIP2, KLKB1 and LMAN1. Phenome-wide association tests in 1688 phecodes and 83 continuous traits in UK Biobank showed associations between a genetic risk score for cTnI and cardiac arrhythmias, metabolic and anthropometric measures. Using two-sample Mendelian randomization, we confirmed the non-causal role of cTnI in AMI (5948 cases, 355 246 controls). We found indications for a causal role of cTnI in HF (47 309 cases and 930 014 controls), but this was not supported by secondary analyses using left ventricular mass as outcome (18 257 individuals). Our findings clarify the biology underlying the heritable contribution to circulating cTnI and support cTnI as a non-causal biomarker for AMI in the general population. Using genetically informed methods for causal inference helps inform the role and value of measuring cTnI in the general population.


Asunto(s)
Biomarcadores , Genética de Población , Estudio de Asociación del Genoma Completo , Troponina I/genética , Alelos , Mapeo Cromosómico , Expresión Génica , Variación Genética , Análisis de la Aleatorización Mendeliana , Especificidad de Órganos , Sitios de Carácter Cuantitativo , Troponina T/genética
19.
Nat Commun ; 12(1): 2182, 2021 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-33846329

RESUMEN

Autosomal genetic analyses of blood lipids have yielded key insights for coronary heart disease (CHD). However, X chromosome genetic variation is understudied for blood lipids in large sample sizes. We now analyze genetic and blood lipid data in a high-coverage whole X chromosome sequencing study of 65,322 multi-ancestry participants and perform replication among 456,893 European participants. Common alleles on chromosome Xq23 are strongly associated with reduced total cholesterol, LDL cholesterol, and triglycerides (min P = 8.5 × 10-72), with similar effects for males and females. Chromosome Xq23 lipid-lowering alleles are associated with reduced odds for CHD among 42,545 cases and 591,247 controls (P = 1.7 × 10-4), and reduced odds for diabetes mellitus type 2 among 54,095 cases and 573,885 controls (P = 1.4 × 10-5). Although we observe an association with increased BMI, waist-to-hip ratio adjusted for BMI is reduced, bioimpedance analyses indicate increased gluteofemoral fat, and abdominal MRI analyses indicate reduced visceral adiposity. Co-localization analyses strongly correlate increased CHRDL1 gene expression, particularly in adipose tissue, with reduced concentrations of blood lipids.


Asunto(s)
Factores de Riesgo Cardiometabólico , Cromosomas Humanos X/genética , Lípidos/sangre , Proteínas del Ojo/metabolismo , Femenino , Regulación de la Expresión Génica , Estudios de Asociación Genética , Sitios Genéticos , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Proteínas del Tejido Nervioso/metabolismo , Fenómica , Polimorfismo de Nucleótido Simple/genética , Tejido Subcutáneo/metabolismo , Secuenciación Completa del Genoma
20.
BMC Med Genomics ; 14(1): 66, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33648514

RESUMEN

BACKGROUND: Disclosure of pathogenic variants to thoracic aortic dissection biobank participants was implemented. The impact and costs, including confirmatory genetic testing in a Clinical Laboratory Improvement Amendments (CLIA)-certified laboratory, were evaluated. METHODS: We exome sequenced 240 cases with thoracic aortic dissection and 258 controls, then examined 11 aortopathy genes. Pathogenic variants in 6 aortopathy genes (COL3A1, FBN1, LOX, PRKG1, SMAD3, and TGFBR2) were identified in 26 participants, representing 10.8% of the cohort (26/240). A second research sample was used to validate the initial findings. Mailed letters to participants disclosed that a potentially disease causing DNA alteration had been identified (neither the gene nor variant was disclosed). Participants were offered clinical genetic counseling and confirmatory genetic testing in a CLIA laboratory. RESULTS: Excluding 6 participants who were deceased or lost to follow-up, 20 participants received the disclosure letter, 10 of whom proceeded with genetic counseling, confirmatory genetic testing, and enrolled in a survey study. Participants reported satisfaction with the letter (4.2 ± 0.7) and genetic counseling (4.4 ± 0.4; [out of 5, respectively]). The psychosocial impact was characterized by low decisional regret (11.5 ± 11.6) and distress (16.0 ± 4.2, [out of 100, respectively]). The average cost for 26 participants was $400, including validation and sending letters. The average cost for those who received genetic counseling and CLIA laboratory confirmation was $605. CONCLUSIONS: Participants were satisfied with the return of clinically significant biobank genetic results and CLIA laboratory testing; however, the process required significant time and resources. These findings illustrate the trade-offs involved for researchers considering returning research genetic results.


Asunto(s)
Bancos de Muestras Biológicas , Disección Aórtica , Revelación , Pruebas Genéticas , Humanos , Masculino , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA