Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Blood ; 142(2): 185-196, 2023 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-37146247

RESUMEN

Pregnancy rates in ß-thalassemia are increasing but the risk of complications is higher; thus, better understanding of maternal and fetal iron homeostasis in this disorder is needed. HbbTh3/+ (Th3/+) mice model human ß-thalassemia. Both the murine and human diseases are characterized by low hepcidin, high iron absorption, and tissue iron overload, with concurrent anemia. We hypothesized that disordered iron metabolism in pregnant Th3/+ mice would negatively affect their unborn offspring. The experimental design included these groups: wild-type (WT) dams carrying WT fetuses (WT1); WT dams carrying WT and Th3/+ fetuses (WT2); Th3/+ dams carrying WT and Th3/+ fetuses (Th3/+); and age-matched, nonpregnant adult females. Serum hepcidin was low, and mobilization of splenic and hepatic storage iron was enhanced in all 3 groups of experimental dams. Intestinal 59Fe absorption was lower in Th3/+ dams (as compared with WT1/2 dams) but splenic 59Fe uptake was higher. Th3/+ dams had hyperferremia, which led to fetal and placenta iron loading, fetal growth restriction, and placentomegaly. Notably, Th3/+ dams loaded Th3/+ and WT fetuses, with the latter situation more closely mirroring human circumstances when mothers with thalassemia have relatively unaffected (thalassemia trait) offspring. Iron-related oxidative stress likely contributed to fetal growth impairment; enhanced placental erythropoiesis is a probable cause of placental enlargement. Moreover, high fetal liver iron transactivated Hamp; fetal hepcidin downregulated placental ferroportin expression, limiting placental iron flux and thus mitigating fetal iron loading. Whether gestational iron loading occurs in human thalassemic pregnancy, when blood transfusion can further elevate serum iron, is worth consideration.


Asunto(s)
Hepcidinas , Talasemia beta , Ratones , Femenino , Humanos , Embarazo , Animales , Talasemia beta/metabolismo , Placenta/metabolismo , Hierro/metabolismo , Feto/metabolismo , Homeostasis
2.
Blood Adv ; 6(10): 3011-3021, 2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-35061889

RESUMEN

Iron-deficiency anemia is common worldwide and typically treated by oral iron supplementation. Excess enteral iron, however, may cause pathological outcomes. Developing new repletion approaches is thus warranted. Previous experimentation revealed that select amino acids (AAs) induce trafficking of transporters onto the enterocyte brush-border membrane (BBM) and enhance electrolyte absorption/secretion. Here, we hypothesized that certain AAs would increase the abundance of the main intestinal iron importer, divalent metal-ion transporter 1 (DMT1), on the BBM of duodenal enterocytes, thus stimulating iron absorption. Accordingly, all 20 AAs were screened using an ex vivo duodenal loop/DMT1 western blotting approach. Four AAs (Asp, Gln, Glu, and Gly) were selected for further experimentation and combined into a new formulation. The 4 AAs stimulated 59Fe transport in mouse duodenal epithelial sheets in Ussing chambers (∼4-fold; P < .05). In iron-deprived mice, oral intragastric administration of the 4 AA formulation increased DMT1 protein abundance on the enterocyte BBM by ∼1.5-fold (P < .05). The 4 AAs also enhanced in vivo 59Fe absorption by ∼2-fold (P < .05), even when ∼26 µg of cold iron was included in the transport solution (equal to a human dose of ∼73 mg). Further experimentation using DMT1int/int mice showed that intestinal DMT1 was required for induction of iron transport by the 4 AAs. Select AAs thus enhance iron absorption by inducing DMT1 trafficking onto the apical membrane of duodenal enterocytes. We speculate that further refinement of this new 4 AA formulation will ultimately allow iron repletion at lower effective doses (thus mitigating negative side effects of excess enteral iron).


Asunto(s)
Sobrecarga de Hierro , Hierro , Aminoácidos/metabolismo , Animales , Duodeno/metabolismo , Hierro/metabolismo , Ratones
3.
Nutrients ; 13(5)2021 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-34063414

RESUMEN

Intestinal iron transport requires an iron importer (Dmt1) and an iron exporter (Fpn1). The hormone hepcidin regulates iron absorption by modulating Fpn1 protein levels on the basolateral surface of duodenal enterocytes. In the genetic, iron-loading disorder hereditary hemochromatosis (HH), hepcidin production is low and Fpn1 protein expression is elevated. High Fpn1-mediated iron export depletes intracellular iron, causing a paradoxical increase in Dmt1-mediated iron import. Increased activity of both transporters causes excessive iron absorption, thus initiating body iron loading. Logically then, silencing of intestinal Dmt1 or Fpn1 could be an effective therapeutic intervention in HH. It was previously established that Dmt1 knock down prevented iron-loading in weanling Hamp (encoding hepcidin) KO mice (modeling type 2B HH). Here, we tested the hypothesis that Dmt1 silencing combined with dietary iron restriction (which may be recommended for HH patients) will mitigate iron loading once already established. Accordingly, adult Hamp KO mice were switched to a low-iron (LFe) diet and (non-toxic) folic acid-coupled, ginger nanoparticle-derived lipid vectors (FA-GDLVs) were used to deliver negative-control (NC) or Dmt1 siRNA by oral, intragastric gavage daily for 21 days. The LFe diet reduced body iron burden, and experimental interventions potentiated iron losses. For example, Dmt1 siRNA treatment suppressed duodenal Dmt1 mRNA expression (by ~50%) and reduced serum and liver non-heme iron levels (by ~60% and >85%, respectively). Interestingly, some iron-related parameters were repressed similarly by FA-GDLVs carrying either siRNA, including 59Fe (as FeCl3) absorption (~20% lower), pancreatic non-heme iron (reduced by ~65%), and serum ferritin (decreased 40-50%). Ginger may thus contain bioactive lipids that also influence iron homeostasis. In conclusion, the combinatorial approach of FA-GDLV and Dmt1 siRNA treatment, with dietary iron restriction, mitigated pre-existing iron overload in a murine model of HH.


Asunto(s)
Administración Oral , Hepcidinas/genética , Hepcidinas/metabolismo , Sobrecarga de Hierro/metabolismo , Hierro de la Dieta/metabolismo , Nanopartículas/química , Factores de Transcripción/metabolismo , Zingiber officinale/química , Animales , Duodeno/metabolismo , Enterocitos/metabolismo , Ácido Fólico , Expresión Génica , Hemocromatosis/genética , Homeostasis , Hierro/metabolismo , Sobrecarga de Hierro/genética , Lípidos , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo , Factores de Transcripción/genética
4.
PLoS One ; 16(6): e0252998, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34143808

RESUMEN

Mucosal damage, barrier breach, inflammation, and iron-deficiency anemia (IDA) typify ulcerative colitis (UC) in humans. The anemia in UC appears to mainly relate to systemic inflammation. The pathogenesis of this 'anemia of inflammation' (AI) involves cytokine-mediated transactivation of hepatic Hamp (encoding the iron-regulatory hormone, hepcidin). In AI, high hepcidin represses iron absorption (and iron release from stores), thus lowering serum iron, and restricting iron for erythropoiesis (causing anemia). In less-severe disease states, inflammation may be limited to the intestine, but whether this perturbs iron homeostasis is uncertain. We hypothesized that localized gut inflammation will increase overall iron demand (to support the immune response and tissue repair), and that hepatic Hamp expression will decrease in response, thus derepressing (i.e., enhancing) iron absorption. Accordingly, we developed a rat model of mild, acute colitis, and studied iron absorption and homeostasis. Rats exposed (orally) to DSS (4%) for 7 days had intestinal (but not systemic) inflammation, and biomarker analyses demonstrated that iron utilization was elevated. Iron absorption was enhanced (by 2-3-fold) in DSS-treated, WT rats of both sexes, but unexpectedly, hepatic Hamp expression was not suppressed. Therefore, to gain a better understanding of regulation of iron absorption during acute colitis, Hamp KO rats were used for further experimentation. The severity of DSS-colitis was similar in Hamp KOs as in WT controls. In the KOs, increased iron requirements associated with the physiological response to colitis were satisfied by mobilizing hepatic storage iron, rather than by increasing absorption of enteral iron (as occurred in WT rats). In conclusion then, in both sexes and genotypes of rats, iron absorption was appropriately modulated to match physiological demand for dietary iron during acute intestinal inflammation, but regulatory mechanisms may not involve hepcidin.


Asunto(s)
Colitis/fisiopatología , Sulfato de Dextran/efectos adversos , Hepcidinas/genética , Hierro/metabolismo , Animales , Colitis/inducido químicamente , Colitis/genética , Colitis/metabolismo , Modelos Animales de Enfermedad , Femenino , Técnicas de Inactivación de Genes , Hepcidinas/metabolismo , Absorción Intestinal , Hígado/metabolismo , Masculino , Ratas , Ratas Sprague-Dawley , Índice de Severidad de la Enfermedad
5.
Mol Ther ; 27(3): 493-506, 2019 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-30713087

RESUMEN

Nanoparticles (NPs) have been utilized to deliver drugs to the intestinal epithelium in vivo. Moreover, NPs derived from edible plants are less toxic than synthetic NPs. Here, we utilized ginger NP-derived lipid vectors (GDLVs) in a proof-of-concept investigation to test the hypothesis that inhibiting expression of divalent metal-ion transporter 1 (Dmt1) would attenuate iron loading in a mouse model of hereditary hemochromatosis (HH). Initial experiments using duodenal epithelial organ cultures from intestine-specific Dmt1 knockout (KO) (Dmt1int/int) mice in the Ussing chamber established that Dmt1 is the only active iron importer during iron-deficiency anemia. Further, when Dmt1int/int mice were crossed with mice lacking the iron-regulatory hormone, hepcidin (Hepc-/-), iron loading was abolished. Hence, intestinal Dmt1 is required for the excessive iron absorption that typifies HH. Additional experiments established a protocol to produce GDLVs carrying functional Dmt1 small interfering RNAs (siRNAs) and to target these gene delivery vehicles to the duodenal epithelium in vivo (by incorporating folic acid [FA]). When FA-GDLVs carrying Dmt1 siRNA were administered to weanling Hepc-/- mice for 16 days, intestinal Dmt1 mRNA expression was attenuated and tissue iron accumulation was blunted. Oral delivery of functional siRNAs by FA-GDLVs is a suitable therapeutic approach to mitigate iron loading in murine HH.


Asunto(s)
Hemocromatosis/metabolismo , Hepcidinas/metabolismo , Nanopartículas/química , Factores de Transcripción/metabolismo , Zingiber officinale , Animales , Femenino , Células HEK293 , Hemocromatosis/genética , Hepcidinas/genética , Humanos , Hierro/metabolismo , Hierro de la Dieta , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Factores de Transcripción/genética
6.
J Nutr ; 148(8): 1244-1252, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-30137476

RESUMEN

Background: Divalent metal-ion transporter 1 (DMT1) may transport copper, but studies to date on this topic have been equivocal. Previously, an ex vivo experiment showed that intestinal copper transport was impaired in Dmt1-mutant Belgrade rats. Objective: In this study, we tested the hypothesis that intestinal DMT1 transports copper in vivo. Methods: Intestine-specific Dmt1 knockout (Dmt1int/int) mice and normal (control) littermates (Dmt1fl/fl) were used. In study 1, intestinal copper absorption was assessed in 7-wk-old mice of both sexes and genotypes by oral-intragastric gavage of 64Cu under normal and iron-deficiency anemia (IDA) conditions. In study 2, both sexes and genotypes of 8-wk-old mice were fed diets with adequate iron concentrations [72 parts per million (ppm)] plus adequate (9 ppm) or excessive (183 ppm) copper concentrations for 4 wk. Iron- and copper-related physiologic variables were subsequently assessed. Results: Study 1 showed that intestinal copper transport was enhanced in normal (∼11% increase in males, 35% in females) and anemic (∼42% increase in males, 35% in females) Dmt1int/int mice. Study 2 showed that, with adequate copper intakes, serum ceruloplasmin (Cp) activity was decreased (by ∼29% in males and 20% in females) and spleens were enlarged (by 3-fold in both sexes) in Dmt1int/int mice. Higher dietary copper increased hepatic copper concentrations (by ∼3.3-fold in males and 1.5-fold in females), restored serum Cp activity, and mitigated the noted splenomegaly in Dmt1int/int mice. Conclusions: Copper homeostasis was disrupted in Dmt1int/int mice, particularly during IDA, despite the noted increases in intestinal copper transport. This was exemplified by the fact that extra dietary copper was required to restore serum Cp activity (a biomarker of copper status) and reduce the severity of the noted splenomegaly (which could reflect changes in erythropoietic demand) in Dmt1int/int mice. Collectively, these observations show that intestinal DMT1 is essential for the assimilation of sufficient quantities of dietary copper to maintain systemic copper homeostasis during IDA.


Asunto(s)
Anemia Ferropénica/complicaciones , Proteínas de Transporte de Catión/metabolismo , Cobre/farmacocinética , Absorción Intestinal , Intestinos/fisiología , Deficiencias de Hierro , Anemia Ferropénica/metabolismo , Animales , Disponibilidad Biológica , Ceruloplasmina/metabolismo , Cobre/metabolismo , Dieta , Femenino , Homeostasis , Iones/metabolismo , Hierro/metabolismo , Hígado/metabolismo , Masculino , Ratones Noqueados , Factores Sexuales , Esplenomegalia/prevención & control
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...