Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Vasc Access ; : 11297298231192386, 2023 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-37589266

RESUMEN

BACKGROUND: Over 60% of End Stage Renal Disease (ESRD) patients are relying on hemodialysis (HD) to survive, and the arteriovenous fistula (AVF) is the preferred vascular access method for HD. However approximately half of all newly created AVF fail to mature and cannot be used without a salvage procedure. We have recently demonstrated an association between AVF maturation failure and post-operative fibrosis, while our RNA-seq study also revealed that veins that ultimately failed during AVF maturation had elevated levels of platelet factor 4 (PF4/CXCL4). However, a link between these two findings was yet to be established. METHODS: In this study, we investigated potential mechanisms between PF4 levels and fibrotic remodeling in veins. We compared the local expression of PF4 and fibrosis marker integrin ß6 (ITGB6) in veins that successfully underwent maturation with that in veins that ultimately failed to mature. We also measured the changes of expression level of α-smooth muscle actin (αSMA/ACTA2) and collagen (Col1/COL1A1) in venous fibroblasts upon various treatments, such as PF4 pharmacological treatment, alteration of PF4 expression, and blocking of PF4 receptors. RESULTS: We found that PF4 is expressed in veins and co-localizes with αSMA. In venous fibroblasts, PF4 stimulates expression of αSMA and Col1 via different pathways. The former requires integrins αvß5 and α5ß1, while chemokine receptor CXCR3 is needed for the latter. Interestingly, we also discovered that the expression of PF4 is associated with that of ITGB6, the ß subunit of integrin αvß6. This integrin is critical for the activation of the major fibrosis factor TGFß, and overexpression of PF4 promotes activation of the TGFß pathway. CONCLUSIONS: These results indicate that upregulation of PF4 may cause venous fibrosis both directly by stimulating fibroblast differentiation and expression of extracellular matrix (ECM) molecules and indirectly by facilitating the activation of the TGFß pathway.

2.
J Vasc Access ; : 11297298221085458, 2022 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-35751379

RESUMEN

The rate of arteriovenous fistula (AVF) maturation failure remains unacceptably high despite continuous efforts on technique improvement and careful pre-surgery planning. In fact, half of all newly created AVFs are unable to be used for hemodialysis (HD) without a salvage procedure. While vascular stenosis in the venous limb of the access is the culprit, the underlying factors leading to vascular narrowing and AVF maturation failure are yet to be determined. We have recently demonstrated that AVF non-maturation is associated with post-operative medial fibrosis and fibrotic stenosis, and post-operative intimal hyperplasia (IH) exacerbates the situation. Multiple pathological processes and signaling pathways are underlying the stenotic remodeling of the AVF. Our group has recently indicated that a pro-inflammatory cytokine platelet factor 4 (PF4/CXCL4) is upregulated in veins that fail to mature after AVF creation. Platelet factor 4 is a fibrosis marker and can be detected in vascular stenosis tissue, suggesting that it may contribute to AVF maturation failure through stimulation of fibrosis and development of fibrotic stenosis. Here, we present an overview of the how PF4-mediated fibrosis determines AVF maturation failure.

3.
Kidney360 ; 2(5): 809-818, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34350420

RESUMEN

BACKGROUND: The role of hyaluronan (HA) in the development and progression of diabetic kidney disease (DKD), as well as the precise mechanisms and consequences of HA involvement in this pathology are still to be clarified. METHODS: In this study, we assayed the effects of the HA synthesis inhibitor 4-methylumbelliferone (4-MU) on the development of DKD. Diabetic type 2 model mice (eNOS-/- C57BLKS/Jdb) were fed artificial diets containing 5% 4-MU or not for 9 weeks. Plasma glucose, glomerular filtration rate (GFR), albumin to creatinine ratio (ACR), and biomarkers of kidney function and systemic inflammation were measured at baseline and after treatment. Diabetic nephropathy was further characterized in treated and control mice by histopathology. RESULTS: Treated animals consumed a daily dose of approximately 6.2 g of 4-MU per kg of body weight. At the end of the experimental period, the 4-MU supplemented diet resulted in a significant decrease in non-fasting plasma glucose (516 [interquartile range 378-1170] vs. 1149 [875.8-1287] mg/dL, P=0.050) and a trend toward lower HA kidney content (5.6 ± 1.5 vs. 8.8 ± 3.1 ng/mg of kidney weight, P=0.070) compared to the control diet, respectively. Diabetic animals treated with 4-MU showed significantly higher GFR and lower urine ACR and plasma cystatin C levels than diabetic controls. Independent histological assessment of DKD also demonstrated a significant decrease in mesangial expansion score and glomerular injury index in 4-MU-treated mice compared to controls. Plasma glucose showed a strong correlation with kidney HA levels (r=0.66, P=0.0098). Both total hyaluronan (r=0.76, P=0.0071) and low-molecular-weight hyaluronan content (r=0.64, P=0.036) in the kidneys correlated with urine ACR in mice. CONCLUSION: These results show that the hyaluronan synthesis inhibitor 4-MU effectively slowed the progression of DKD and constitutes a potential new therapeutic approach to treat DKD.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Animales , Nefropatías Diabéticas/tratamiento farmacológico , Modelos Animales de Enfermedad , Tasa de Filtración Glomerular , Ácido Hialurónico/uso terapéutico , Riñón/patología , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...