Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
JHEP Rep ; 5(5): 100693, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37122688

RESUMEN

Background & Aims: Non-alcoholic fatty liver disease (NAFLD) has a prevalence of ∼25% worldwide, with significant public health consequences yet few effective treatments. Human genetics can help elucidate novel biology and identify targets for new therapeutics. Genetic variants in mitochondrial amidoxime-reducing component 1 (MTARC1) have been associated with NAFLD and liver-related mortality; however, its pathophysiological role and the cell type(s) mediating these effects remain unclear. We aimed to investigate how MTARC1 exerts its effects on NAFLD by integrating human genetics with in vitro and in vivo studies of mARC1 knockdown. Methods: Analyses including multi-trait colocalisation and Mendelian randomisation were used to assess the genetic associations of MTARC1. In addition, we established an in vitro long-term primary human hepatocyte model with metabolic readouts and used the Gubra Amylin NASH (GAN)-diet non-alcoholic steatohepatitis mouse model treated with hepatocyte-specific N-acetylgalactosamine (GalNAc)-siRNA to understand the in vivo impacts of MTARC1. Results: We showed that genetic variants within the MTARC1 locus are associated with liver enzymes, liver fat, plasma lipids, and body composition, and these associations are attributable to the same causal variant (p.A165T, rs2642438 G>A), suggesting a shared mechanism. We demonstrated that increased MTARC1 mRNA had an adverse effect on these traits using Mendelian randomisation, implying therapeutic inhibition of mARC1 could be beneficial. In vitro mARC1 knockdown decreased lipid accumulation and increased triglyceride secretion, and in vivo GalNAc-siRNA-mediated knockdown of mARC1 lowered hepatic but increased plasma triglycerides. We found alterations in pathways regulating lipid metabolism and decreased secretion of 3-hydroxybutyrate upon mARC1 knockdown in vitro and in vivo. Conclusions: Collectively, our findings from human genetics, and in vitro and in vivo hepatocyte-specific mARC1 knockdown support the potential efficacy of hepatocyte-specific targeting of mARC1 for treatment of NAFLD. Impact and implications: We report that genetically predicted increases in MTARC1 mRNA associate with poor liver health. Furthermore, knockdown of mARC1 reduces hepatic steatosis in primary human hepatocytes and a murine NASH model. Together, these findings further underscore the therapeutic potential of targeting hepatocyte MTARC1 for NAFLD.

2.
Physiol Rep ; 7(21): e14267, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31724332

RESUMEN

Fibrillin-1 mutations cause pathological changes in connective tissue that constitute the complex phenotype of Marfan syndrome. In this study, we used fibrillin-1 hypomorphic and haploinsufficient mice (Fbn1mgr/mgR and Fbn1+/- mice, respectively) to investigate the impact of fibrillin-1 deficiency alone or in combination with regular physical activity on tendon tissue morphology and mechanical properties. Morphological and biomechanical analyses revealed that Fbn1mgr/mgR but not Fbn1+/- mice displayed smaller tendons with physical properties that were unremarkable when normalized to tendon size. Fbn1mgR/mgR mice (n = 43) Fbn1+/- mice (n = 27) and wild-type mice (WT, n = 25) were randomly assigned to either control cage conditions (n = 54) or to a running on a running wheel for 4 weeks (n = 41). Both fibrillin-1-deficient mice ran voluntarily on the running wheel in a manner similar to WT mice (3-4 km/24 h). Regular exercise did not mitigate aneurysm progression in Fbn1mgR/mgR mice (P < 0.05) as evidenced by unmodified median survival. In spite of the smaller size, tendons of fibrillin-1-deficient mice subjected to regular exercise showed no evidence of overt histopathological changes or tissue overload. We therefore concluded that lack of optimal fibrillin-1 synthesis leads to a down regulation of integrated tendon formation, rather than to a loss of tendon quality, which also implies that fibrillin-1 deficiency in combination with exercise is not a suitable animal model for studying the development of tendon overuse (tendinopathy).


Asunto(s)
Fibrilina-1/fisiología , Condicionamiento Físico Animal/fisiología , Tendones/patología , Tendones/fisiopatología , Animales , Fenómenos Biomecánicos , Fibrilina-1/genética , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos
3.
Sci Rep ; 9(1): 8905, 2019 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-31222033

RESUMEN

CHUK/IKKα contributes to collagenase-driven extracellular matrix remodeling and chondrocyte hypertrophic differentiation in vitro, in a kinase-independent manner. These processes contribute to osteoarthritis (OA), where chondrocytes experience a phenotypic shift towards hypertrophy concomitant with abnormal matrix remodeling. Here we investigated the contribution of IKKα to OA in vivo. To this end, we induced specific IKKα knockout in adult chondrocytes in AcanCreERT2/+; IKKαf/f mice treated with tamoxifen (cKO). Vehicle-treated littermates were used as wild type controls (WT). At 12 weeks of age, WT and cKO mice were subjected to the destabilization of medial meniscus (DMM) model of post-traumatic OA. The cKO mice showed reduced cartilage degradation and collagenase activity and fewer hypertrophy-like features at 12 weeks after DMM. Interestingly, in spite of the protection from structural articular cartilage damage, the postnatal growth plates of IKKα cKO mice after DMM displayed abnormal architecture and composition associated with increased chondrocyte apoptosis, which were not as evident in the articular chondrocytes of the same animals. Together, our results provide evidence of a novel in vivo functional role for IKKα in cartilage degradation in post-traumatic OA, and also suggest intrinsic, cell-autonomous effects of IKKα in chondrocytes that control chondrocyte phenotype and impact on cell survival, matrix homeostasis, and remodeling.


Asunto(s)
Cartílago Articular/metabolismo , Condrocitos/metabolismo , Quinasa I-kappa B/genética , Osteoartritis/cirugía , Animales , Supervivencia Celular , Condrocitos/patología , Modelos Animales de Enfermedad , Homeostasis , Humanos , Ratones Noqueados
4.
Sci Rep ; 8(1): 6438, 2018 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-29691435

RESUMEN

The E-74 like factor 3 (ELF3) is a transcription factor induced by inflammatory factors in various cell types, including chondrocytes. ELF3 levels are elevated in human cartilage from patients with osteoarthritis (OA), and ELF3 contributes to the IL-1ß-induced expression of genes encoding Mmp13, Nos2, and Ptgs2/Cox2 in chondrocytes in vitro. Here, we investigated the contribution of ELF3 to cartilage degradation in vivo, using a mouse model of OA. To this end, we generated mouse strains with cartilage-specific Elf3 knockout (Col2Cre:Elf3f/f) and Comp-driven Tet-off-inducible Elf3 overexpression (TRE-Elf3:Comp-tTA). To evaluate the contribution of ELF3 to OA, we induced OA in 12-week-old Col2Cre:Elf3f/f and 6-month-old TRE-Elf3:Comp-tTA male mice using the destabilization of the medial meniscus (DMM) model. The chondrocyte-specific deletion of Elf3 led to decreased levels of IL-1ß- and DMM-induced Mmp13 and Nos2 mRNA in vitro and in vivo, respectively. Histological grading showed attenuation of cartilage loss in Elf3 knockout mice compared to wild type (WT) littermates at 8 and 12 weeks following DMM surgery that correlated with reduced collagenase activity. Accordingly, Elf3 overexpression led to increased cartilage degradation post-surgery compared to WT counterparts. Our results provide evidence that ELF3 is a central contributing factor for cartilage degradation in post-traumatic OA in vivo.


Asunto(s)
Cartílago/metabolismo , Proteínas de Unión al ADN/metabolismo , Osteoartritis/metabolismo , Factores de Transcripción/metabolismo , Animales , Cartílago Articular/patología , Condrocitos/metabolismo , Proteínas de Unión al ADN/fisiología , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Interleucina-1beta/metabolismo , Masculino , Metaloproteinasa 13 de la Matriz/metabolismo , Meniscos Tibiales/patología , Ratones , Ratones Noqueados , Modelos Anatómicos , Óxido Nítrico Sintasa de Tipo II/metabolismo , Osteoartritis/fisiopatología , Factores de Transcripción/fisiología
5.
Matrix Biol ; 71-72: 82-89, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-28782645

RESUMEN

Mutations in fibrillin-1 cause Marfan syndrome (MFS), the most common heritable disorder of connective tissue. Fibrillin-1 assemblies (microfibrils and elastic fibers) represent a unique dual-function component of the architectural matrix. The first role is structural for they endow tissues with tensile strength and elasticity, transmit forces across them and demarcate functionally discrete areas within them. The second role is instructive in that these macroaggregates modulate a large variety of sub-cellular processes by interacting with mechanosensors, and integrin and syndecan receptors, and by modulating the bioavailability of local TGFß signals. The multifunctional, tissue-specific nature of fibrillin-1 assemblies is reflected in the variety of clinical manifestations and disease mechanisms associated with the MFS phenotype. Characterization of mice with ubiquitous or cell type-restricted fibrillin-1 deficiency has unraveled some pathophysiological mechanisms associated with the MFS phenotype, such as altered mechanotransduction in the heart, dysregulated TGFß signaling in the ascending aorta and perturbed stem cell fate in the bone marrow. In each case, potential druggable targets have also been identified. However, the finding that distinct disease mechanisms underlie different organ abnormalities strongly argues for developing multi-drug strategies to mitigate or even prevent both life-threatening and morbid manifestations in pediatric and adult MFS patients.


Asunto(s)
Fibrilina-1/genética , Síndrome de Marfan/metabolismo , Mecanotransducción Celular , Células Madre/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Animales , Modelos Animales de Enfermedad , Humanos , Síndrome de Marfan/genética , Mutación , Miocardio/metabolismo , Transducción de Señal
6.
Connect Tissue Res ; 58(1): 15-26, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27310669

RESUMEN

AIM: We showed previously that E74-like factor 3 (ELF3) protein levels are increased in osteoarthritic (OA) cartilage, that ELF3 accounts for inflammatory cytokine-driven MMP13 gene expression, and that, upon induction by interleukin-1ß, ELF3 binds to the COL2A1 promoter and suppresses its activity in chondrocytes. Here, we aimed to further investigate the mechanism/s by which ELF3 represses COL2A1 transcription in chondrocytes. METHODS AND RESULTS: We report that ELF3 inhibits Sox9-driven COL2A1 promoter activity by interfering with the activator functions of CBP/300 and Sox9. Co-transfection of the pGL2B-COL2A1 (-577/+3428 bp) reporter construct with Sox9 and with Sox5 and/or Sox6 increased COL2A1 promoter activity, and ELF3 overexpression significantly reduced the promoter transactivation. Co-transfection of ELF3 with the pLuc 4x48 enhancer construct, containing the 89-bp COL2A1 promoter and lacking the previously defined ELF3 binding sites, decreased both basal and Sox9-driven promoter activity. Co-transfection of ELF3 with a Gal4 reporter construct also inhibited Gal4-Sox9-driven transactivation, suggesting that ELF3 directly interacts with Sox9. Using truncated Sox9 fragments, we found that ELF3 interacts directly with the HMG domain of Sox9. Importantly, overexpression of ELF3 significantly decreased Sox9/CBP-dependent HAT activity. Finally, we show evidence that increased ELF3 mRNA expression in OA chondrocytes correlates with hypermethylation of the proximal promoter, suggesting that ELF3 transcription is subjected to epigenetic control in OA disease. CONCLUSION: Our results highlight the contribution of ELF3 to transcriptional regulation of COL2A1 and its potential role in OA disease, and uncover epigenetic mechanisms at play in the regulation of ELF3 and its downstream targets in articular chondrocytes.


Asunto(s)
Condrocitos/metabolismo , Colágeno Tipo II/biosíntesis , Proteínas de Unión al ADN/metabolismo , Proteínas Proto-Oncogénicas c-ets/metabolismo , Factor de Transcripción SOX9/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética/fisiología , Factores de Transcripción p300-CBP/metabolismo , Línea Celular Transformada , Colágeno Tipo II/genética , Proteínas de Unión al ADN/genética , Humanos , Proteínas Proto-Oncogénicas c-ets/genética , Elementos de Respuesta/fisiología , Factor de Transcripción SOX9/genética , Factores de Transcripción/genética , Factores de Transcripción p300-CBP/genética
7.
Methods Mol Biol ; 1226: 143-73, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25331049

RESUMEN

The surgical model of destabilization of the medial meniscus (DMM) has become a gold standard for studying the onset and progression of posttraumatic osteoarthritis (OA). The DMM model mimics clinical meniscal injury, a known predisposing factor for the development of human OA, and permits the study of structural and biological changes over the course of the disease. In addition, when applied to genetically modified or engineered mouse models, this surgical procedure permits dissection of the relative contribution of a given gene to OA initiation and/or progression. This chapter describes the requirements for the surgical induction of OA in mouse models, and provides guidelines and tools for the subsequent histological, immunohistochemical, and molecular analyses. Methods for the assessment of the contributions of selected genes in genetically modified strains are also provided.


Asunto(s)
Artritis Experimental , Traumatismos de la Rodilla , Meniscos Tibiales , Osteoartritis de la Rodilla , Animales , Artritis Experimental/patología , Artritis Experimental/fisiopatología , Humanos , Traumatismos de la Rodilla/complicaciones , Traumatismos de la Rodilla/patología , Traumatismos de la Rodilla/fisiopatología , Meniscos Tibiales/patología , Meniscos Tibiales/fisiopatología , Ratones , Osteoartritis de la Rodilla/etiología , Osteoartritis de la Rodilla/patología , Osteoartritis de la Rodilla/fisiopatología , Lesiones de Menisco Tibial
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...