Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
2.
Hepatology ; 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38051950

RESUMEN

BACKGROUND AND AIMS: Chromatin assembly factor 1 (CAF-1) is a replication-dependent epigenetic regulator that controls cell cycle progression and chromatin dynamics. In this study, we aim to investigate the immunomodulatory role and therapeutic potential of the CAF-1 complex in HCC. APPROACH AND RESULTS: CAF-1 complex knockout cell lines were established using the CRISPR/Cas9 system. The effects of CAF-1 in HCC were studied in HCC cell lines, nude mice, and immunocompetent mice. RNA-sequencing, ChIP-Seq, and assay for transposase accessible chromatin with high-throughput sequencing (ATAC-Seq) were used to explore the changes in the epigenome and transcriptome. CAF-1 complex was significantly upregulated in human and mouse HCCs and was associated with poor prognosis in patients with HCC. Knockout of CAF-1 remarkably suppressed HCC growth in both in vitro and in vivo models. Mechanistically, depletion of CAF-1 induced replicative stress and chromatin instability, which eventually led to cytoplasmic DNA leakage as micronuclei. Also, chromatin immunoprecipitation sequencing analyses revealed a massive H3.3 histone variant replacement upon CAF-1 knockout. Enrichment of euchromatic H3.3 increased chromatin accessibility and activated the expression of endogenous retrovirus elements, a phenomenon known as viral mimicry. However, cytosolic micronuclei and endogenous retroviruses are recognized as ectopic elements by the stimulator of interferon genes and dsRNA viral sensing pathways, respectively. As a result, the knockout of CAF-1 activated inflammatory response and antitumor immune surveillance and thereby significantly enhanced the anticancer effect of immune checkpoint inhibitors in HCC. CONCLUSIONS: Our findings suggest that CAF-1 is essential for HCC development; targeting CAF-1 may awaken the anticancer immune response and may work cooperatively with immune checkpoint inhibitor treatment in cancer therapy.

7.
Blood ; 142(23): 2002-2015, 2023 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-37738460

RESUMEN

Acute myeloid leukemia (AML) with TP53 mutation is one of the most lethal cancers and portends an extremely poor prognosis. Based on in silico analyses of druggable genes and differential gene expression in TP53-mutated AML, we identified pololike kinase 4 (PLK4) as a novel therapeutic target and examined its expression, regulation, pathogenetic mechanisms, and therapeutic potential in TP53-mutated AML. PLK4 expression was suppressed by activated p53 signaling in TP53 wild-type AML and was increased in TP53-mutated AML cell lines and primary samples. Short-term PLK4 inhibition induced DNA damage and apoptosis in TP53 wild-type AML. Prolonged PLK4 inhibition suppressed the growth of TP53-mutated AML and was associated with DNA damage, apoptosis, senescence, polyploidy, and defective cytokinesis. A hitherto undescribed PLK4/PRMT5/EZH2/H3K27me3 axis was demonstrated in both TP53 wild-type and mutated AML, resulting in histone modification through PLK4-induced PRMT5 phosphorylation. In TP53-mutated AML, combined effects of histone modification and polyploidy activated the cGAS-STING pathway, leading to secretion of cytokines and chemokines and activation of macrophages and T cells upon coculture with AML cells. In vivo, PLK4 inhibition also induced cytokine and chemokine expression in mouse recipients, and its combination with anti-CD47 antibody, which inhibited the "don't-eat-me" signal in macrophages, synergistically reduced leukemic burden and prolonged animal survival. The study shed important light on the pathogenetic role of PLK4 and might lead to novel therapeutic strategies in TP53-mutated AML.


Asunto(s)
Histonas , Leucemia Mieloide Aguda , Animales , Ratones , Histonas/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Mutación , Metilación , Nucleotidiltransferasas/metabolismo , Leucemia Mieloide Aguda/patología , Inmunidad , Poliploidía
8.
Sci Adv ; 9(18): eade5111, 2023 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-37146141

RESUMEN

Hypoxia-induced adenosine creates an immunosuppressive tumor microenvironment (TME) and dampens the efficacy of immune checkpoint inhibitors (ICIs). We found that hypoxia-inducible factor 1 (HIF-1) orchestrates adenosine efflux through two steps in hepatocellular carcinoma (HCC). First, HIF-1 activates transcriptional repressor MXI1, which inhibits adenosine kinase (ADK), resulting in the failure of adenosine phosphorylation to adenosine monophosphate. This leads to adenosine accumulation in hypoxic cancer cells. Second, HIF-1 transcriptionally activates equilibrative nucleoside transporter 4, pumping adenosine into the interstitial space of HCC, elevating extracellular adenosine levels. Multiple in vitro assays demonstrated the immunosuppressive role of adenosine on T cells and myeloid cells. Knockout of ADK in vivo skewed intratumoral immune cells to protumorigenic and promoted tumor progression. Therapeutically, combination treatment of adenosine receptor antagonists and anti-PD-1 prolonged survival of HCC-bearing mice. We illustrated the dual role of hypoxia in establishing an adenosine-mediated immunosuppressive TME and offered a potential therapeutic approach that synergizes with ICIs in HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Ratones , Neoplasias Hepáticas/patología , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Ratones Noqueados , Hipoxia/metabolismo , Adenosina/metabolismo , Línea Celular Tumoral , Microambiente Tumoral
9.
Cell Mol Gastroenterol Hepatol ; 16(1): 133-159, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36893885

RESUMEN

BACKGROUND & AIMS: Hepatocellular carcinoma (HCC) is a highly aggressive malignancy with dreadful clinical outcome. Tyrosine kinase inhibitors and immune checkpoint inhibitors are the only United States Food and Drug Administration-approved therapeutic options for patients with advanced HCC with limited therapeutic success. Ferroptosis is a form of immunogenic and regulated cell death caused by chain reaction of iron-dependent lipid peroxidation. Coenzyme Q10 (CoQ10)/ferroptosis suppressor protein 1 (FSP1) axis was recently identified as a novel protective mechanism against ferroptosis. We would like to explore whether FSP1 could be a potential therapeutic target for HCC. METHODS: FSP1 expression in human HCC and paired non-tumorous tissue samples were determined by reverse transcription-quantitative polymerase chain reaction, followed by clinicopathologic correlation and survival studies. Regulatory mechanism for FSP1 was determined using chromatin immunoprecipitation. The hydrodynamic tail vein injection model was used for HCC induction to evaluate the efficacy of FSP1 inhibitor (iFSP1) in vivo. Single-cell RNA sequencing revealed the immunomodulatory effects of iFSP1 treatment. RESULTS: We showed that HCC cells greatly rely on the CoQ10/FSP1 system to overcome ferroptosis. We found that FSP1 was significantly overexpressed in human HCC and is regulated by kelch-like ECH-associated protein 1/nuclear factor erythroid 2-related factor 2 pathway. FSP1 inhibitor iFSP1 effectively reduced HCC burden and profoundly increased immune infiltrates including dendritic cells, macrophages, and T cells. We also demonstrated that iFSP1 worked synergistically with immunotherapies to suppress HCC progression. CONCLUSIONS: We identified FSP1 as a novel, vulnerable therapeutic target in HCC. The inhibition of FSP1 potently induced ferroptosis, which promoted innate and adaptive anti-tumor immune responses and effectively suppressed HCC tumor growth. FSP1 inhibition therefore represents a new therapeutic strategy for HCC.


Asunto(s)
Carcinoma Hepatocelular , Ferroptosis , Neoplasias Hepáticas , Estados Unidos , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Carcinoma Hepatocelular/tratamiento farmacológico , Inmunoterapia , Línea Celular
10.
Hepatol Commun ; 7(4)2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36930870
11.
Cell Mol Gastroenterol Hepatol ; 15(6): 1325-1350, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36806581

RESUMEN

BACKGROUND & AIMS: Metabolic reprogramming is recognized as a cancer hallmark intimately linked to tumor hypoxia, which supports rapid tumor growth and mitigates the consequential oxidative stress. Phosphofructokinase-fructose bisphosphatase (PFKFB) is a family of bidirectional glycolytic enzymes possessing both kinase and phosphatase functions and has emerged as important oncogene in multiple types of cancer. However, its clinical relevance, functional significance, and underlying mechanistic insights in hepatocellular carcinoma (HCC), the primary malignancy that develops in the most important metabolic organ, has never been addressed. METHODS: PFKFB4 expression was examined by RNA sequencing in The Cancer Genome Atlas and our in-house HCC cohort. The up-regulation of PFKFB4 expression was confirmed further by quantitative polymerase chain reaction in an expanded hepatitis B virus-associated HCC cohort followed by clinicopathologic correlation analysis. Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)-mediated PFKFB4 knockout cells were generated for functional characterization in vivo, targeted metabolomic profiling, as well as RNA sequencing analysis to comprehensively examine the impact of PFKFB4 loss in HCC. RESULTS: PFKFB4 expression was up-regulated significantly in HCC and correlated positively with TP53 and TSC2 loss-of-function mutations. In silico transcriptome-based analysis further revealed PFKFB4 functions as a critical hypoxia-inducible gene. Clinically, PFKFB4 up-regulation was associated with more aggressive tumor behavior. Functionally, CRISPR/Cas9-mediated PFKFB4 knockout significantly impaired in vivo HCC development. Targeted metabolomic profiling revealed that PFKFB4 functions as a phosphatase in HCC and its ablation caused an accumulation of metabolites in downstream glycolysis and the pentose phosphate pathway. In addition, PFKFB4 loss induced hypoxia-responsive genes in glycolysis and reactive oxygen species detoxification. Conversely, ectopic PFKFB4 expression conferred sorafenib resistance. CONCLUSIONS: PFKFB4 up-regulation supports HCC development and shows therapeutic implications.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Línea Celular Tumoral , Fosfofructoquinasa-2/genética , Fosfofructoquinasa-2/metabolismo , Neoplasias Hepáticas/genética , Hipoxia , Proteína p53 Supresora de Tumor/genética
12.
J Hepatol ; 78(2): 376-389, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36455783

RESUMEN

BACKGROUND & AIMS: Tyrosine kinase inhibitors (TKIs) and immune checkpoint inhibitors (ICIs) are the only two classes of FDA-approved drugs for individuals with advanced hepatocellular carcinoma (HCC). While TKIs confer only modest survival benefits, ICIs have been associated with remarkable outcomes but only in the minority of patients who respond. Understanding the mechanisms that determine the efficacy of ICIs in HCC will help to stratify patients likely to respond to ICIs. This study aims to elucidate how genetic composition and specific oncogenic pathways regulate the immune composition of HCC, which directly affects response to ICIs. METHODS: A collection of mouse HCCs with genotypes that closely simulate the genetic composition found in human HCCs were established using genome-editing approaches involving the delivery of transposon and CRISPR-Cas9 systems by hydrodynamic tail vein injection. Mouse HCC tumors were analyzed by RNA-sequencing while tumor-infiltrating T cells were analyzed by flow cytometry and single-cell RNA-sequencing. RESULTS: Based on the CD8+ T cell-infiltration level, we characterized tumors with different genotypes into cold and hot tumors. Anti-PD-1 treatment had no effect in cold tumors but was greatly effective in hot tumors. As proof-of-concept, a cold tumor (Trp53KO/MYCOE) and a hot tumor (Keap1KO/MYCOE) were further characterized. Tumor-infiltrating CD8+ T cells from Keap1KO/MYCOE HCCs expressed higher levels of proinflammatory chemokines and exhibited enrichment of a progenitor exhausted CD8+ T-cell phenotype compared to those in Trp53KO/MYCOE HCCs. The TKI sorafenib sensitized Trp53KO/MYCOE HCCs to anti-PD-1 treatment. CONCLUSION: Single anti-PD-1 treatment appears to be effective in HCCs with genetic mutations driving hot tumors, while combined anti-PD-1 and sorafenib treatment may be more appropriate in HCCs with genetic mutations driving cold tumors. IMPACT AND IMPLICATIONS: Genetic alterations of different driver genes in mouse liver cancers are associated with tumor-infiltrating CD8+ T cells and anti-PD-1 response. Mouse HCCs with different genetic compositions can be grouped into hot and cold tumors based on the level of tumor-infiltrating CD8+ T cells. This study provides proof-of-concept evidence to show that hot tumors are responsive to anti-PD-1 treatment while cold tumors are more suitable for combined treatment with anti-PD-1 and sorafenib. Our study might help to guide the design of patient stratification systems for single or combined treatments involving anti-PD-1.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Ratones , Animales , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Sorafenib/farmacología , Sorafenib/uso terapéutico , Proteína 1 Asociada A ECH Tipo Kelch/genética , Edición Génica , Linfocitos T CD8-positivos , Factor 2 Relacionado con NF-E2/genética , ARN/metabolismo
13.
Hepatology ; 77(3): 729-744, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35302667

RESUMEN

BACKGROUND AND AIMS: Prognosis of HCC remains poor due to lack of effective therapies. Immune checkpoint inhibitors (ICIs) have delayed response and are only effective in a subset of patients. Treatments that could effectively shrink the tumors within a short period of time are idealistic to be employed together with ICIs for durable tumor suppressive effects. HCC acquires increased tolerance to aneuploidy. The rapid division of HCC cells relies on centrosome duplication. In this study, we found that polo-like kinase 4 (PLK4), a centrosome duplication regulator, represents a therapeutic vulnerability in HCC. APPROACH AND RESULTS: An orally available PLK4 inhibitor, CFI-400945, potently suppressed proliferating HCC cells by perturbing centrosome duplication. CFI-400945 induced endoreplication without stopping DNA replication, causing severe aneuploidy, DNA damage, micronuclei formation, cytosolic DNA accumulation, and senescence. The cytosolic DNA accumulation elicited the DEAD box helicase 41-stimulator of interferon genes-interferon regulatory factor 3/7-NF-κß cytosolic DNA sensing pathway, thereby driving the transcription of senescence-associated secretory phenotypes, which recruit immune cells. CFI-400945 was evaluated in liver-specific p53/phosphatase and tensin homolog knockout mouse HCC models established by hydrodynamic tail vein injection. Tumor-infiltrated immune cells were analyzed. CFI-400945 significantly impeded HCC growth and increased infiltration of cluster of differentiation 4-positive (CD4 + ), CD8 + T cells, macrophages, and natural killer cells. Combination therapy of CFI-400945 with anti-programmed death-1 showed a tendency to improve HCC survival. CONCLUSIONS: We show that by targeting a centrosome regulator, PLK4, to activate the cytosolic DNA sensing-mediated immune response, CFI-400945 effectively restrained tumor progression through cell cycle inhibition and inducing antitumor immunity to achieve a durable suppressive effect even in late-stage mouse HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Ratones , Aneuploidia , Carcinoma Hepatocelular/patología , Ciclo Celular , Línea Celular Tumoral , Neoplasias Hepáticas/patología , Proteínas Serina-Treonina Quinasas/metabolismo
14.
Adv Sci (Weinh) ; 9(34): e2202104, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36310121

RESUMEN

Hepatocellular carcinoma (HCC) is the second most lethal cancer worldwide. Glutamine is an essential, extracellular nutrient which supports HCC growth. Dietary glutamine deficiency may be a potential therapeutic approach for HCC. HCC cells overcome metabolic challenges by rewiring their metabolic pathways for rapid adaptations. The efficiency of dietary glutamine deficiency as HCC treatment is examined and the adaptation machinery under glutamine depletion in HCC cells is unraveled. Using genome-wide CRISPR/Cas9 knockout library screening, this study identifies that pyruvate dehydrogenase α (PDHA), pyruvate dehydrogenase ß (PDHB), and pyruvate carboxylase (PC) in pyruvate metabolism are crucial to the adaptation of glutamine depletion in HCC cells. Knockout of either PDHA, PDHB or PC induced metabolic reprogramming of the tricarboxylic acid (TCA) cycle, disrupts mitochondrial function, leading to the suppression of HCC cell proliferation under glutamine depletion. Surprisingly, dietary glutamine restriction improves therapeutic responses of HCC to PDH or PC inhibitor in mouse HCC models. Stable isotope carbon tracing confirms that PDH or PC inhibitors further disrupt the metabolic rewiring of the TCA cycle induced by dietary glutamine depletion in HCC. In summary, the results demonstrate that pyruvate metabolism acts as novel targetable metabolic vulnerabilities for HCC treatment in combination with a glutamine-deficient diet.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Ratones , Animales , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Detección Precoz del Cáncer , Ratones Noqueados , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Glutamina , Ácido Pirúvico , Sistemas CRISPR-Cas/genética , Oxidorreductasas
15.
Proc Natl Acad Sci U S A ; 119(32): e2119514119, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35914158

RESUMEN

Deregulation of cell cycle is a typical feature of cancer cells. Normal cells rely on the strictly coordinated spindle assembly checkpoint (SAC) to maintain the genome integrity and survive. However, cancer cells could bypass this checkpoint mechanism. In this study, we showed the clinical relevance of threonine tyrosine kinase (TTK) protein kinase, a central regulator of the SAC, in hepatocellular carcinoma (HCC) and its potential as therapeutic target. Here, we reported that a newly developed, orally active small molecule inhibitor targeting TTK (CFI-402257) effectively suppressed HCC growth and induced highly aneuploid HCC cells, DNA damage, and micronuclei formation. We identified that CFI-402257 also induced cytosolic DNA, senescence-like response, and activated DDX41-STING cytosolic DNA sensing pathway to produce senescence-associated secretory phenotypes (SASPs) in HCC cells. These SASPs subsequently led to recruitment of different subsets of immune cells (natural killer cells, CD4+ T cells, and CD8+ T cells) for tumor clearance. Our mass cytometry data illustrated the dynamic changes in the tumor-infiltrating immune populations after treatment with CFI-402257. Further, CFI-402257 improved survival in HCC-bearing mice treated with anti-PD-1, suggesting the possibility of combination treatment with immune checkpoint inhibitors in HCC patients. In summary, our study characterized CFI-402257 as a potential therapeutic for HCC, both used as a single agent and in combination therapy.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Inhibidores de Proteínas Quinasas , Pirazoles , Pirimidinas , Animales , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD8-positivos/metabolismo , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Proliferación Celular , Células Asesinas Naturales/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Ratones , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Serina-Treonina Quinasas , Proteínas Tirosina Quinasas/metabolismo , Pirazoles/uso terapéutico , Pirimidinas/uso terapéutico
16.
Antioxid Redox Signal ; 37(16-18): 1303-1324, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35538791

RESUMEN

Significance: Immune cell therapy involves the administration of immune cells into patients, and it has emerged as one of the most common type of immunotherapy for cancer treatment. Knowledge on the biology and metabolism of the adoptively transferred immune cells and the metabolic requirements of different cell types in the tumor is fundamental for the development of immune cell therapy with higher efficacy. Recent Advances: Adoptive T cell therapy has been shown to be effective in limited types of cancer. Different types and generations of adoptive T cell therapies have evolved in the recent decade. This review covers the basic principles and development of these therapies in cancer treatment. Critical Issues: Our review provides an overview on the basic concepts on T cell metabolism and highlights the metabolic requirements of T and adoptively transferred T cells. Future Directions: Integrating the knowledge just cited will facilitate the development of strategies to maximize the expansion of adoptively transferred T cells ex vivo and in vivo and to promote their durability and antitumor effects. Antioxid. Redox Signal. 37, 1303-1324.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos , Humanos
17.
J Hepatol ; 77(2): 383-396, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35227773

RESUMEN

BACKGROUND & AIMS: The highly proliferative nature of hepatocellular carcinoma (HCC) frequently results in a hypoxic intratumoural microenvironment, which creates a therapeutic challenge owing to a lack of mechanistic understanding of the phenomenon. We aimed to identify critical drivers of HCC development and progression in the hypoxic microenvironment. METHODS: We performed integrative analysis of multiple transcriptomic and genomic profiles specific for HCC and hypoxia and identified the Ephrin-A3/Eph receptor A2 (EphA2) axis as a clinically relevant and hypoxia-inducible signalling axis in HCC. The functional significance and mechanistic consequences of the Ephrin-A3/EphA2 axis were examined in EFNA3- and EPHA2- knockdown/overexpressing HCC cells. The potential downstream pathways were investigated by transcriptome sequencing, quantitative reverse-transcription PCR, western blotting analysis and metabolomics. RESULTS: EFNA3 was frequently upregulated in HCC and its overexpression was associated with more aggressive tumour behaviours. HIF-1α directly and positively regulated EFNA3 expression under hypoxia. EFNA3 functionally contributed to self-renewal, proliferation and migration in HCC cells. EphA2 was identified as a key functional downstream mediator of EFNA3. Functional characterisation of the Ephrin-A3/EphA2 forward-signalling axis demonstrated a promotion of self-renewal ability and tumour initiation. Mechanistically, the Ephrin-A3/EphA2 axis promoted the maturation of SREBP1 and expression of its transcriptional target, ACLY, was significantly associated with the expression of EFNA3 and hypoxia markers in clinical cohorts. The metabolic signature of EPHA2 and ACLY stable knockdown HCC cells demonstrated significant overlap in fatty acid, cholesterol and tricarboxylic acid cycle metabolite profiles. ACLY was confirmed to mediate the self-renewal function of the Ephrin-A3/EphA2 axis. CONCLUSIONS: Our findings revealed the novel role of the Ephrin-A3/EphA2 axis as a hypoxia-sensitive modulator of HCC cell metabolism and a key contributor to HCC initiation and progression. LAY SUMMARY: Hepatocellular carcinoma (HCC) is a fast-growing tumour; hence, areas of the tumour often have insufficient vasculature and become hypoxic. The presence of hypoxia within tumours has been shown to negatively impact on the survival of patients with tumours, including HCC. Herein, we identified the Ephrin-A3/EphA2 axis as a key functional driver of tumour initiation and progression in response to hypoxia. Additionally, we showed that SREBP1-ACLY-mediated metabolic rewiring was an important downstream effector that induced cancer stemness in response to Ephrin-A3/EphA2 forward-signalling.


Asunto(s)
Carcinoma Hepatocelular , Efrina-A3 , Neoplasias Hepáticas , Receptor EphA2 , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Efrina-A3/genética , Efrina-A3/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Hipoxia , Neoplasias Hepáticas/patología , Receptor EphA2/genética , Receptor EphA2/metabolismo , Microambiente Tumoral
18.
Cell Rep ; 38(5): 110304, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35108543

RESUMEN

Cancer cells adapt to hypoxia through HIFs (hypoxia-inducible factors), which initiate the transcription of numerous genes for cancer cell survival in the hypoxia microenvironment. In this study, we find that the FACT (facilitates chromatin transcription) complex works cooperatively with HIFs to facilitate the expeditious expression of HIF targets for hypoxia adaptation. Knockout (KO) of the FACT complex abolishes HIF-mediated transcription by impeding transcription elongation in hypoxic cancer cells. Interestingly, the FACT complex is post-translationally regulated by PHD/VHL-mediated hydroxylation and proteasomal degradation, in similar fashion to HIF-1/2α. Metabolic tracing confirms that FACT KO suppresses glycolytic flux and impairs lactate extrusion, leading to intracellular acidification and apoptosis in cancer cells. Therapeutically, hepatic artery ligation and anti-angiogenic inhibitors adversely induce intratumoral hypoxia, while co-treatment with FACT inhibitor curaxin remarkably hinders the growth of hypoxic tumors. In summary, our findings suggest that the FACT complex is a critical component of hypoxia adaptation and a therapeutic target for hypoxic tumors.


Asunto(s)
Chaperonas de Histonas/metabolismo , Hipoxia/metabolismo , Oxígeno/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Línea Celular Tumoral , Supervivencia Celular/fisiología , Regulación Neoplásica de la Expresión Génica/fisiología , Humanos , Hipoxia/genética
19.
Nat Commun ; 13(1): 954, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-35177645

RESUMEN

Hepatocellular carcinoma (HCC) invariably exhibits inadequate O2 (hypoxia) and nutrient supply. Hypoxia-inducible factor (HIF) mediates cascades of molecular events that enable cancer cells to adapt and propagate. Macropinocytosis is an endocytic process initiated by membrane ruffling, causing the engulfment of extracellular fluids (proteins), protein digestion and subsequent incorporation into the biomass. We show that macropinocytosis occurs universally in HCC under hypoxia. HIF-1 activates the transcription of a membrane ruffling protein, EH domain-containing protein 2 (EHD2), to initiate macropinocytosis. Knockout of HIF-1 or EHD2 represses hypoxia-induced macropinocytosis and prevents hypoxic HCC cells from scavenging protein that support cell growth. Germline or somatic deletion of Ehd2 suppresses macropinocytosis and HCC development in mice. Intriguingly, EHD2 is overexpressed in HCC. Consistently, HIF-1 or macropinocytosis inhibitor suppresses macropinocytosis and HCC development. Thus, we show that hypoxia induces macropinocytosis through the HIF/EHD2 pathway in HCC cells, harnessing extracellular protein as a nutrient to survive.


Asunto(s)
Carcinoma Hepatocelular/inmunología , Proteínas Portadoras/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Neoplasias Hepáticas/inmunología , Pinocitosis/inmunología , Hipoxia Tumoral/genética , Animales , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Proteínas Portadoras/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/inmunología , Técnicas de Silenciamiento del Gen , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/antagonistas & inhibidores , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Ratones , Ratones Noqueados , Pinocitosis/efectos de los fármacos , Pinocitosis/genética , Prueba de Estudio Conceptual , Hipoxia Tumoral/inmunología , Ensayos Antitumor por Modelo de Xenoinjerto
20.
Hepatol Commun ; 6(1): 178-193, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34558800

RESUMEN

Liver cancers consist primarily of hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC). Immune checkpoint inhibitors have emerged as promising therapeutic agents against liver cancers. Programmed cell death protein 1 (PD-1) is an immunoinhibitory receptor present on T cells that interacts with its ligand programmed death-ligand 1 (PD-L1) found on cancer cells. Blocking PD-1/PD-L1 binding improves T-cell survival, proliferation and cytotoxicity, which enhances their antitumor activity. Better understanding of the molecular mechanisms governing PD-1/PD-L1 response is essential to the development of predictive markers and therapeutic combinations that could improve the efficiency of anti-PD-1/PD-L1 treatment. Chemokine-like factor (CKLF)-like MARVEL transmembrane domain-containing 6 (CMTM6) has been recently identified as a major regulator of PD-L1. Another member in the CMTM family, CKLF-like MARVEL transmembrane domain-containing 4 (CMTM4), has been shown to compensate for the effects of CMTM6 when CMTM6 is lost. Interestingly, we found that CMTM4 is the major regulator of PD-L1 in the context of liver cancer. Up-regulated CMTM4 in patients with HCC and ICC is associated with poor patient survival, potentially due to its function in stabilizing PD-L1 expression, hence facilitating escape from T cell-mediated cytotoxicity. We confirmed the role of CMTM4 as a positive regulator of PD-L1 in multiple HCC and ICC cell lines and demonstrated that CMTM4 stabilizes PD-L1 through posttranslational mechanisms. In vivo, suppression of Cmtm4 inhibited HCC growth and increased CD8+ T-cell infiltration in immunocompetent mice. Furthermore, we found that depletion of CMTM4 sensitized HCC tumor to anti-PD-L1 treatment compared with control. This suggests that CMTM4 expression level could be a predictive marker for patient response to anti-PD-L1 treatment, and CMTM4 depletion can potentially be used to enhance the clinical benefits of anti-PD-L1 immunotherapy in patients with liver cancer.


Asunto(s)
Carcinoma Hepatocelular/inmunología , Colangiocarcinoma/inmunología , Neoplasias Hepáticas/inmunología , Proteínas con Dominio MARVEL/genética , Receptor de Muerte Celular Programada 1/inmunología , Animales , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/metabolismo , Células Cultivadas , Colangiocarcinoma/tratamiento farmacológico , Colangiocarcinoma/metabolismo , Hepatocitos , Humanos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo , Proteínas con Dominio MARVEL/antagonistas & inhibidores , Ratones Endogámicos C57BL , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA