Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Dev Cell ; 52(3): 277-293.e8, 2020 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-31866201

RESUMEN

Compacted heterochromatin blocks are prevalent in differentiated cells and present a barrier to cellular reprogramming. It remains obscure how heterochromatin remodeling is orchestrated during cell differentiation. Here we find that the evolutionarily conserved homeodomain transcription factor Prospero (Pros)/Prox1 ensures neuronal differentiation by driving heterochromatin domain condensation and expansion. Intriguingly, in mitotically dividing Drosophila neural precursors, Pros is retained at H3K9me3+ pericentromeric heterochromatin regions of chromosomes via liquid-liquid phase separation (LLPS). During mitotic exit of neural precursors, mitotically retained Pros recruits and concentrates heterochromatin protein 1 (HP1) into phase-separated condensates and drives heterochromatin compaction. This establishes a transcriptionally repressive chromatin environment that guarantees cell-cycle exit and terminal neuronal differentiation. Importantly, mammalian Prox1 employs a similar "mitotic-implantation-ensured heterochromatin condensation" strategy to reinforce neuronal differentiation. Together, our results unveiled a new paradigm whereby mitotic implantation of a transcription factor via LLPS remodels H3K9me3+ heterochromatin and drives timely and irreversible terminal differentiation.


Asunto(s)
Diferenciación Celular , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Heterocromatina/metabolismo , Mitosis , Proteínas del Tejido Nervioso/metabolismo , Neuronas/citología , Proteínas Nucleares/metabolismo , Transición de Fase , Factores de Transcripción/metabolismo , Animales , Ensamble y Desensamble de Cromatina , Proteínas Cromosómicas no Histona/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Femenino , Regulación de la Expresión Génica , Heterocromatina/genética , Histonas/genética , Histonas/metabolismo , Extracción Líquido-Líquido , Masculino , Proteínas del Tejido Nervioso/genética , Neuronas/metabolismo , Proteínas Nucleares/genética , Nucleosomas , Factores de Transcripción/genética
2.
Elife ; 72018 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-30176986

RESUMEN

The correct establishment and maintenance of unidirectional Notch signaling are critical for the homeostasis of various stem cell lineages. However, the molecular mechanisms that prevent cell-autonomous ectopic Notch signaling activation and deleterious cell fate decisions remain unclear. Here we show that the retromer complex directly and specifically regulates Notch receptor retrograde trafficking in Drosophila neuroblast lineages to ensure the unidirectional Notch signaling from neural progenitors to neuroblasts. Notch polyubiquitination mediated by E3 ubiquitin ligase Itch/Su(dx) is inherently inefficient within neural progenitors, relying on retromer-mediated trafficking to avoid aberrant endosomal accumulation of Notch and cell-autonomous signaling activation. Upon retromer dysfunction, hypo-ubiquitinated Notch accumulates in Rab7+ enlarged endosomes, where it is ectopically processed and activated in a ligand-dependent manner, causing progenitor-originated tumorigenesis. Our results therefore unveil a safeguard mechanism whereby retromer retrieves potentially harmful Notch receptors in a timely manner to prevent aberrant Notch activation-induced neural progenitor dedifferentiation and brain tumor formation.


Asunto(s)
Carcinogénesis/metabolismo , Proteínas de Drosophila/metabolismo , Complejos Multiproteicos/metabolismo , Células-Madre Neurales/metabolismo , Receptores Notch/metabolismo , Animales , Carcinogénesis/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Endosomas/metabolismo , Células HEK293 , Humanos , Complejos Multiproteicos/genética , Mutación , Unión Proteica , Transporte de Proteínas , Receptores Notch/genética , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
3.
Elife ; 72018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29714689

RESUMEN

Understanding how cellular identity naturally interconverts with high efficiency and temporospatial precision is crucial for regenerative medicine. Here, we revealed a natural midgut-to-renal lineage conversion event during Drosophila metamorphosis and identified the evolutionarily-conserved homeodomain protein Cut as a master switch in this process. A steep Wnt/Wingless morphogen gradient intersects with a pulse of steroid hormone ecdysone to induce cut expression in a subset of midgut progenitors and reprogram them into renal progenitors. Molecularly, ecdysone-induced temporal factor Broad physically interacts with cut enhancer-bound Wnt pathway effector TCF/ß-catenin and likely bridges the distant enhancer and promoter region of cut through its self-association. Such long-range enhancer-promoter looping could subsequently trigger timely cut transcription. Our results therefore led us to propose an unexpected poising-and-bridging mechanism whereby spatial and temporal cues intersect, likely via chromatin looping, to turn on a master transcription factor and dictate efficient and precise lineage reprogramming.


Asunto(s)
Linaje de la Célula , Reprogramación Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Regulación de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Proteínas Nucleares/metabolismo , Células Madre/citología , Factores de Transcripción/metabolismo , Animales , Fenómenos Biomecánicos , Proteínas de Drosophila/genética , Drosophila melanogaster/fisiología , Proteínas de Homeodominio/genética , Proteínas Nucleares/genética , Regiones Promotoras Genéticas , Células Madre/metabolismo , Factores de Transcripción/genética , Proteínas Wnt/genética , Proteínas Wnt/metabolismo
4.
Dev Cell ; 40(6): 537-551.e6, 2017 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-28350987

RESUMEN

Asymmetric stem cell division establishes an initial difference between a stem cell and its differentiating sibling, critical for maintaining homeostasis and preventing carcinogenesis. Yet the mechanisms that consolidate and lock in such initial fate bias remain obscure. Here, we use Drosophila neuroblasts to demonstrate that the super elongation complex (SEC) acts as an intrinsic amplifier to drive cell fate commitment. SEC is highly expressed in neuroblasts, where it promotes self-renewal by physically associating with Notch transcription activation complex and enhancing HES (hairy and E(spl)) transcription. HES in turn upregulates SEC activity, forming an unexpected self-reinforcing feedback loop with SEC. SEC inactivation leads to neuroblast loss, whereas its forced activation results in neural progenitor dedifferentiation and tumorigenesis. Our studies unveil an SEC-mediated intracellular amplifier mechanism in ensuring robustness and precision in stem cell fate commitment and provide mechanistic explanation for the highly frequent association of SEC overactivation with human cancers.


Asunto(s)
Linaje de la Célula , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Animales , Desdiferenciación Celular , Autorrenovación de las Células , Drosophila melanogaster/genética , Femenino , Genes de Insecto , Masculino , Unión Proteica , Subunidades de Proteína/metabolismo , Receptores Notch/metabolismo , Transducción de Señal , Activación Transcripcional/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...