Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Virol ; 90(2): 1108-15, 2016 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-26559837

RESUMEN

UNLABELLED: Maternal primary cytomegalovirus (CMV) infection, reactivation, or reinfection with a different viral strain may cause fetal injury and adverse pregnancy outcomes. Increasing evidence indicates that fetal injury results not only from direct viral cytopathic damage to the CMV-infected fetus but also from indirect effects through placental infection and dysfunction. CMV alters Wingless (Wnt) signaling, an essential cellular pathway involved in placentation, as evidenced by reduced transcription of canonical Wnt target genes and decreased Wnt3a-induced trophoblast migration. Whether CMV affects the noncanonical Wnt signaling pathway has been unclear. This study demonstrates for the first time that CMV infection inhibits Wnt5a-stimulated migration of human SGHPL-4 trophoblasts and that inhibition of the pathway restores normal migration of CMV-infected cells. Western blot and real-time PCR analyses show increased expression of noncanonical Wnt receptor ROR2 in CMV-infected trophoblasts. Mimicking the CMV-induced ROR2 protein expression via ectopic expression inhibited Wnt5a-induced trophoblast migration and reduced T cell-specific factor (TCF)/lymphoid enhancer-binding factor (LEF)-mediated transcription as measured using luciferase reporter assays. Gene silencing using small interfering RNA (siRNA) duplexes decreased ROR2 transcript and protein levels. In contrast, proliferation of SGHPL-4 trophoblasts, measured by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay was not affected. The siRNA-mediated downregulation of ROR2 in trophoblasts rescued CMV-induced reduction in trophoblast migration. These data suggest a mechanism where CMV alters the expression of the Wnt receptor ROR2 to alter Wnt5a-mediated signaling and inhibit trophoblast motility. Inhibition of this mechanism may be a target for therapeutic intervention for CMV-induced placental damage and consequent fetal damage in congenital CMV infections. IMPORTANCE: Maternal primary cytomegalovirus (CMV) infection, reactivation, or reinfection with a different viral strain may cause fetal injury and adverse pregnancy outcomes. Increasing evidence indicates that fetal injury results not only from direct viral cytopathic damage to the CMV-infected fetus but also from indirect effects through placental infection and placental dysfunction. No effective therapy is currently proven to prevent or treat congenital CMV infection. Understanding the molecular underpinnings of CMV infection of the placenta is essential for therapeutic innovations and vaccine design. CMV alters canonical Wingless (Wnt) signaling, an essential cellular pathway involved in placental development. This study suggests a mechanism in which CMV alters the expression of noncanonical Wnt receptor ROR2 to alter motility of placental cells, which has important implications in the pathogenesis of CMV-induced placental dysfunction. Inhibition of this mechanism may be a target for therapeutic intervention for CMV-induced placental damage and consequent fetal damage in congenital CMV infection.


Asunto(s)
Movimiento Celular , Citomegalovirus/fisiología , Interacciones Huésped-Patógeno , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/metabolismo , Trofoblastos/fisiología , Western Blotting , Línea Celular , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Humanos , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/genética
2.
Nat Commun ; 5: 4794, 2014 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-25183443

RESUMEN

Genetic diversity of influenza A viruses (IAV) acquired through the error-prone RNA-dependent RNA polymerase (RdRP) or through genetic reassortment enables perpetuation of IAV in humans through epidemics or pandemics. Here, to assess the biological significance of genetic diversity acquired through RdRP, we characterize an IAV fidelity variant derived from passaging a seasonal H3N2 virus in the presence of ribavirin, a purine analogue that increases guanosine-to-adenosine mutations. We demonstrate that a single PB1-V43I mutation increases selectivity to guanosine in A/Wuhan/359/95 (H3N2) and A/Vietnam/1203/04 (H5N1) viruses. The H5N1 PB1-V43I-recombinant virus replicates to comparable titres as the wild-type virus in vitro or in the mouse lungs. However, a decrease in viral population diversity at day 3 post inoculation is associated with a tenfold reduced lethality and neurotropism in mice. Applying a fidelity variant with reduced mutational frequency, we provide direct experimental evidence for the role of genetic diversity in IAV pathogenesis.


Asunto(s)
Subtipo H3N2 del Virus de la Influenza A/genética , Subtipo H5N1 del Virus de la Influenza A/genética , Mutación/efectos de los fármacos , ARN Polimerasa Dependiente del ARN/genética , Virus Reordenados/genética , Proteínas Virales/genética , Adenosina/genética , Animales , Antivirales/farmacología , Farmacorresistencia Viral/genética , Femenino , Variación Genética , Guanosina/genética , Subtipo H3N2 del Virus de la Influenza A/patogenicidad , Subtipo H5N1 del Virus de la Influenza A/patogenicidad , Pulmón/patología , Pulmón/virología , Ratones , Ratones Endogámicos BALB C , Infecciones por Orthomyxoviridae/mortalidad , Infecciones por Orthomyxoviridae/patología , Infecciones por Orthomyxoviridae/virología , ARN Polimerasa Dependiente del ARN/metabolismo , Virus Reordenados/patogenicidad , Ribavirina/farmacología , Análisis de Supervivencia , Proteínas Virales/metabolismo , Tropismo Viral
3.
J Virol ; 86(19): 10558-70, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22811535

RESUMEN

Limited antiviral compounds are available for the control of influenza, and the emergence of resistant variants would further narrow the options for defense. The H275Y neuraminidase (NA) mutation, which confers resistance to oseltamivir carboxylate, has been identified among the seasonal H1N1 and 2009 pandemic influenza viruses; however, those H275Y resistant variants demonstrated distinct epidemiological outcomes in humans. Specifically, dominance of the H275Y variant over the oseltamivir-sensitive viruses was only reported for a seasonal H1N1 variant during 2008-2009. Here, we systematically analyze the effect of the H275Y NA mutation on viral fitness and transmissibility of A(H1N1)pdm09 and seasonal H1N1 influenza viruses. The NA genes from A(H1N1)pdm09 A/California/04/09 (CA04), seasonal H1N1 A/New Caledonia/20/1999 (NewCal), and A/Brisbane/59/2007 (Brisbane) were individually introduced into the genetic background of CA04. The H275Y mutation led to reduced NA enzyme activity, an increased K(m) for 3'-sialylactose or 6'-sialylactose, and decreased infectivity in mucin-secreting human airway epithelial cells compared to the oseltamivir-sensitive wild-type counterparts. Attenuated pathogenicity in both RG-CA04(NA-H275Y) and RG-CA04 × Brisbane(NA-H275Y) viruses was observed in ferrets compared to RG-CA04 virus, although the transmissibility was minimally affected. In parallel experiments using recombinant Brisbane viruses differing by hemagglutinin and NA, comparable direct contact and respiratory droplet transmissibilities were observed among RG-NewCal(HA,NA), RG-NewCal(HA,NA-H275Y), RG-Brisbane(HA,NA-H275Y), and RG-NewCal(HA) × Brisbane(NA-H275Y) viruses. Our results demonstrate that, despite the H275Y mutation leading to a minor reduction in viral fitness, the transmission potentials of three different antigenic strains carrying this mutation were comparable in the naïve ferret model.


Asunto(s)
Farmacorresistencia Viral , Subtipo H1N1 del Virus de la Influenza A/genética , Mutación , Neuraminidasa/genética , Oseltamivir/farmacología , Animales , Antígenos/metabolismo , Antivirales/farmacología , Perros , Hurones , Células HEK293 , Humanos , Cinética , Masculino , Mucinas/metabolismo , Replicación Viral
4.
J Virol ; 85(22): 11581-7, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21880750

RESUMEN

The 2009 pandemic influenza H1N1 (H1N1pdm) virus was generated by reassortment of swine influenza viruses of different lineages. This was the first influenza pandemic to emerge in over 4 decades and the first to occur after the realization that influenza pandemics arise from influenza viruses of animals. In order to understand the biological determinants of pandemic emergence, it is relevant to compare the tropism of different lineages of swine influenza viruses and reassortants derived from them with that of 2009 pandemic H1N1 (H1N1pdm) and seasonal influenza H1N1 viruses in ex vivo cultures of the human nasopharynx, bronchus, alveoli, and conjunctiva. We hypothesized that virus which can transmit efficiently between humans replicated well in the human upper airways. As previously reported, H1N1pdm and seasonal H1N1 viruses replicated efficiently in the nasopharyngeal, bronchial, and alveolar epithelium. In contrast, representative viruses from the classical swine (CS) (H1N1) lineage could not infect human respiratory epithelium; Eurasian avian-like swine (EA) (H1N1) viruses only infected alveolar epithelium and North American triple-reassortant (TRIG) viruses only infected the bronchial epithelium albeit inefficiently. Interestingly, a naturally occurring triple-reassortant swine virus, A/SW/HK/915/04 (H1N2), with a matrix gene segment of EA swine derivation (i.e., differing from H1N1pdm only in lacking a neuraminidase [NA] gene of EA derivation) readily infected and replicated in human nasopharyngeal and bronchial epithelia but not in the lung. A recombinant sw915 with the NA from H1N1pdm retained its tropism for the bronchus and acquired additional replication competence for alveolar epithelium. In contrast to H1N1pdm, none of the swine viruses tested nor seasonal H1N1 had tropism in human conjunctiva. Recombinant viruses generated by swapping the surface proteins (hemagglutinin and NA) of H1N1pdm and seasonal H1N1 virus demonstrated that these two gene segments together are key determinants of conjunctival tropism. Overall, these findings suggest that ex vivo cultures of the human respiratory tract provide a useful biological model for assessing the human health risk of swine influenza viruses.


Asunto(s)
Conjuntiva/virología , Subtipo H1N1 del Virus de la Influenza A/patogenicidad , Subtipo H1N2 del Virus de la Influenza A/patogenicidad , Virus Reordenados/aislamiento & purificación , Mucosa Respiratoria/virología , Tropismo Viral , Animales , Humanos , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/crecimiento & desarrollo , Subtipo H1N2 del Virus de la Influenza A/genética , Subtipo H1N2 del Virus de la Influenza A/crecimiento & desarrollo , Técnicas de Cultivo de Órganos , Porcinos , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...