Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Adv Mater ; : e2404278, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38743014

RESUMEN

Atom-site catalysts, especially for graphitic carbon nitride-based catalysts, represents one of the most promising candidates in catalysis membrane for water decontamination. However, unravelling the intricate relationships between synthesis-structure-properties remains a great challenge. This study addresses the impacts of coordination environment and structure units of metal central sites based on Mantel test, correlation analysis, and evolution of metal central sites. An optimized unconventional oxygen doping cooperated with Co-N-Fe dual-sites (OCN Co/Fe) exhibits synergistic mechanism for efficient peroxymonosulfate activation, which benefits from a significant increase in charge density at the active sites and the regulation in the natural population of orbitals, leading to selective generation of SO4 •-. Building upon these findings, the OCN-Co/Fe/PVDF composite membrane demonstrates a 33 min-1 ciprofloxacin (CIP) rejection efficiency and maintains over 96% CIP removal efficiency (over 24 h) with an average permeance of 130.95 L m-2 h-1. This work offers a fundamental guide for elucidating the definitive origin of catalytic performance in advance oxidation process to facilitate the rational design of separation catalysis membrane with improved performance and enhanced stability.

2.
Nat Mater ; 23(2): 196-204, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38191634

RESUMEN

The quest for electronic devices that offer flexibility, wearability, durability and high performance has spotlighted two-dimensional (2D) van der Waals materials as potential next-generation semiconductors. Especially noteworthy is indium selenide, which has demonstrated surprising ultra-high plasticity. To deepen our understanding of this unusual plasticity in 2D van der Waals materials and to explore inorganic plastic semiconductors, we have conducted in-depth experimental and theoretical investigations on metal monochalcogenides (MX) and transition metal dichalcogenides (MX2). We have discovered a general plastic deformation mode in MX, which is facilitated by the synergetic effect of phase transitions, interlayer gliding and micro-cracks. This is in contrast to crystals with strong atomic bonding, such as metals and ceramics, where plasticity is primarily driven by dislocations, twinning or grain boundaries. The enhancement of gliding barriers prevents macroscopic fractures through a pinning effect after changes in stacking order. The discovery of ultra-high plasticity and the phase transition mechanism in 2D MX materials holds significant potential for the design and development of high-performance inorganic plastic semiconductors.

3.
Nat Commun ; 14(1): 7304, 2023 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-37951934

RESUMEN

Multiferroic materials have ignited enormous interest owing to their co-existence of ferroelectricity and ferromagnetism, which hold substantial promise for advanced device applications. However, the size effect, dangling bonds, and interface effect in traditional multiferroics severely hinder their potential in nanoscale device applications. Recent theoretical and experimental studies have evidenced the possibility of realizing two-dimensional (2D) multiferroicity in van der Waals (vdW) layered CuCrP2S6. However, the incorporation of magnetic Cr ions in the ferroelectric framework leads to antiferroelectric and antiferromagnetic orderings, while macroscopic spontaneous polarization is always absent. Herein, we report the direct observation of robust out-of-plane ferroelectricity in 2D vdW CuCrP2S6 at room temperature with a comprehensive investigation. Modification of the ferroelectric polarization states in 2D CuCrP2S6 nanoflakes is experimentally demonstrated. Moreover, external electric field-induced polarization switching and hysteresis loops are obtained in CuCrP2S6 down to ~2.6 nm (4 layers). By using atomically resolved scanning transmission electron microscopy, we unveil the origin of the emerged room-temperature ferroelectricity in 2D CuCrP2S6. Our work can facilitate the development of multifunctional nanodevices and provide important insights into the nature of ferroelectric ordering of this 2D vdW material.

4.
Nat Commun ; 14(1): 6462, 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37833368

RESUMEN

Surface amorphization provides electrocatalysts with more active sites and flexibility. However, there is still a lack of experimental observations and mechanistic explanations for the in situ amorphization process and its crucial role. Herein, we propose the concept that by in situ reconstructed amorphous surface, metal phosphorus trichalcogenides could intrinsically offer better catalytic performance for the alkaline hydrogen production. Trace Ru (0.81 wt.%) is doped into NiPS3 nanosheets for alkaline hydrogen production. Using in situ electrochemical transmission electron microscopy technique, we confirmed the amorphization process occurred on the edges of NiPS3 is critical for achieving superior activity. Comprehensive characterizations and theoretical calculations reveal Ru primarily stabilized at edges of NiPS3 through in situ formed amorphous layer containing bridging S22- species, which can effectively reduce the reaction energy barrier. This work emphasizes the critical role of in situ formed active layer and suggests its potential for optimizing catalytic activities of electrocatalysts.

5.
ACS Appl Mater Interfaces ; 15(21): 25849-25859, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37200621

RESUMEN

Atmospheric water harvesting (AWH) is a possible solution for the current water crisis on the Earth, and the key process of AWH has been widely applied in commercial dehumidifiers. To improve the energy efficiency of the AWH process, applying a superhydrophobic surface to trigger coalescence-induced jumping could be a promising technique that has attracted extensive interest. While most previous studies focused on optimizing the geometric parameters such as nanoscale surface roughness (<1 µm) or microscale structures (10 µm to a few hundred µm range), which might enhance AWH, here, we report a simple and low-cost approach for superhydrophobic surface engineering, through alkaline oxidation of copper. The prepared medium-sized microflower structures (3-5 µm) by our method could fill the gap of the conventional nano- and microstructures, simultaneously act as the preferable nucleation sites and the promoter for the condensed droplet mobility including droplet coalescence and departure, and eventually benefit the entire AWH performances. Moreover, our AWH structure has been optimized with the aid of machine learning computer vision techniques for droplet dynamic analysis on a micrometer scale. Overall, the alkaline surface oxidation and medium-scale microstructures could provide excellent opportunities for superhydrophobic surfaces for future AWH.

6.
Adv Mater ; 35(14): e2210503, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36637097

RESUMEN

The scalable 2D device fabrication and integration demand either the large-area synthesis or the post-synthesis transfer of 2D layers. While the direct synthesis of 2D materials on most targeted surfaces remains challenging, the transfer approach from the growth substrate onto the targeted surfaces offers an alternative pathway for applications and integrations. However, the current transfer techniques for 2D materials predominantly involve polymers and organic solvents, which are liable to contaminate or deform the ultrasensitive atomic layers. Here, novel ice-aided transfer and ice-stamp transfer methods are developed, in which water (ice) is the only medium in the entire process. In practice, the adhesion between various 2D materials and ice can be well controlled by temperature. Through such controlled adhesion of ice, it is shown that the new transfer methods can yield ultrahigh quality and exceptional cleanliness in transferred 2D flakes and continuous 2D films, and are applicable for a wide range of substrates. Furthermore, beyond transfer, ice can also be used for cleaning the surfaces of 2D materials at higher temperatures. These novel techniques can enable unprecedented ultraclean 2D materials surfaces and performances, and will contribute to the upcoming technological revolutions associated with 2D materials.

7.
Nat Nanotechnol ; 18(1): 55-63, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36509923

RESUMEN

Memory transistors based on two-dimensional (2D) ferroelectric semiconductors are intriguing for next-generation in-memory computing. To date, several 2D ferroelectric materials have been unveiled, among which 2D In2Se3 is the most promising, as all the paraelectric (ß), ferroelectric (α) and antiferroelectric (ß') phases are found in 2D quintuple layers. However, the large-scale synthesis of 2D In2Se3 films with the desired phase is still absent, and the stability for each phase remains obscure. Here we show the successful growth of centimetre-scale 2D ß-In2Se3 film by chemical vapour deposition including distinct centimetre-scale 2D ß'-In2Se3 film by an InSe precursor. We also demonstrate that as-grown 2D ß'-In2Se3 films on mica substrates can be delaminated or transferred onto flexible or uneven substrates, yielding α-In2Se3 films through a complete phase transition. Thus, a full spectrum of paraelectric, ferroelectric and antiferroelectric 2D films can be readily obtained by means of the correlated polymorphism in 2D In2Se3, enabling 2D memory transistors with high electron mobility, and polarizable ß'-α In2Se3 heterophase junctions with improved non-volatile memory performance.

8.
Angew Chem Int Ed Engl ; 62(4): e202216008, 2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36399056

RESUMEN

The direct utilization of metal-organic frameworks (MOFs) for electrocatalytic oxygen evolution reaction (OER) has attracted increasing interests. Herein, we employ the low-dose integrated differential phase contrast-scanning transmission electron microscopy (iDPC-STEM) technique to visualize the atomic structure of multivariate MOFs (MTV-MOFs) for guiding the structural design of bulk MOFs for efficient OER. The iDPC-STEM images revealed that incorporating Fe3+ or 2-aminoterephthalate (ATA) into Ni-BDC (BDC: benzenedicarboxylate) can introduce inhomogeneous lattice strain that weaken the coordination bonds, which can be selectively cleaved via a mild heat treatment to simultaneously generate coordinatively unsaturated metal sites, conductive Ni@C and hierarchical porous structure. Thus, excellent OER activity with current densities of 10 and 100 mA cm-2 are achieved over the defective MOFs at small overpotentials of 286 mV and 365 mV, respectively, which is superior to the commercial RuO2 catalyst and most of the bulk MOFs.

9.
Sci Adv ; 8(42): eabo0773, 2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36269828

RESUMEN

Phase transitions in two-dimensional (2D) materials promise reversible modulation of material physical and chemical properties in a wide range of applications. 2D van der Waals layered In2Se3 with bistable out-of-plane ferroelectric (FE) α phase and antiferroelectric (AFE) ß' phase is particularly attractive for its electronic applications. However, reversible phase transition in 2D In2Se3 remains challenging. Here, we introduce two factors, dimension (thickness) and strain, which can effectively modulate the phases of 2D In2Se3. We achieve reversible AFE and out-of-plane FE phase transition in 2D In2Se3 by delicate strain control inside a transmission electron microscope. In addition, the polarizations in 2D FE In2Se3 can also be manipulated in situ at the nanometer-sized contacts, rendering remarkable memristive behavior. Our in situ transmission electron microscopy (TEM) work paves a previously unidentified way for manipulating the correlated FE phases and highlights the great potentials of 2D ferroelectrics for nanoelectromechanical and memory device applications.

10.
Nanomaterials (Basel) ; 12(13)2022 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-35807964

RESUMEN

Multilevel resistive switching in memristive devices is vital for applications in non-volatile memory and neuromorphic computing. In this study, we report on the multilevel resistive switching characteristics in SnSe/SrTiO3(STO) heterojunction-based memory devices with silver (Ag) and copper (Cu) top electrodes. The SnSe/STO-based memory devices present bipolar resistive switching (RS) with two orders of magnitude on/off ratio, which is reliable and stable. Moreover, multilevel state switching is achieved in the devices by sweeping voltage with current compliance to SET the device from high resistance state (HRS) to low resistance state (LRS) and RESET from LRS to HRS by voltage pulses without compliance current. With Ag and Cu top electrodes, respectively, eight and six levels of resistance switching were demonstrated in the SnSe/SrTiO3 heterostructures with a Pt bottom electrode. These results suggest that a SnSe/STO heterojunction-based memristor is promising for applications in neuromorphic computing as a synaptic device.

11.
Adv Sci (Weinh) ; 9(23): e2200702, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35723437

RESUMEN

Phase patterning in polymorphic two-dimensional (2D) materials offers diverse properties that extend beyond what their pristine structures can achieve. If precisely controllable, phase transitions can bring exciting new applications for nanometer-scale devices and ultra-large-scale integrations. Here, the focused electron beam is capable of triggering the phase transition from the semiconducting T'' phase to metallic T' and T phases in 2D rhenium disulfide (ReS2 ) and rhenium diselenide (ReSe2 ) monolayers, rendering ultra-precise phase patterning technique even in sub-nanometer scale is found. Based on knock-on effects and strain analysis, the phase transition mechanism on the created atomic vacancies and the introduced substantial in-plane compressive strain in 2D layers are clarified. This in situ high-resolution scanning transmission electron microscopy (STEM) and in situ electrical characterizations agree well with the density functional theory (DFT) calculation results for the atomic structures, electronic properties, and phase transition mechanisms. Grain boundary engineering and electrical contact engineering in 2D are thus developed based on this patterning technique. The patterning method exhibits great potential in ultra-precise electron beam lithography as a scalable top-down manufacturing method for future atomic-scale devices.

12.
Adv Mater ; 34(32): e2204140, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35765163

RESUMEN

Cu3 (HHTT)2 (HHTT: 2,3,7,8,12,13-hexahydroxytetraazanaphthotetraphene) is a novel 2D conjugated metal-organic framework (2D c-MOF) with efficient in-plane d-π conjugations and strong interlayer π-π interactions while the growth of Cu3 (HHTT)2 thin films has never been reported until now. Here, the successful fabrication of highly oriented wafer-scale Cu3 (HHTT)2 thin films with a layer-by-layer growth method on various substrates is presented. Its semiconducting behavior and carrier transport mechanisms are clarified through temperature and frequency-dependent conductivity measurements. Flexible photodetectors based on Cu3 (HHTT)2 thin films exhibit reliable photoresponses at room temperature in a wavelength region from UV to mid-IR, which is much broader than those of solution-processed broadband photodetectors reported previously. Moreover, the photodetectors can show a typical synaptic behavior and excellent data recognition accuracy in artificial neural networks. This work opens a window for the exploration of high-performance and multifunctional optoelectronic devices based on 2D c-MOFs.

13.
Sci Adv ; 6(47)2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33208360

RESUMEN

Low-dimensional materials usually exhibit mechanical properties from those of their bulk counterparts. Here, we show in two-dimensional (2D) rhenium disulfide (ReS2) that the fracture processes are dominated by a variety of previously unidentified phenomena, which are not present in bulk materials. Through direct transmission electron microscopy observations at the atomic scale, the structures close to the brittle crack tip zones are clearly revealed. Notably, the lattice reconstructions initiated at the postcrack edges can impose additional strain on the crack tips, modifying the fracture toughness of this material. Moreover, the monatomic thickness allows the restacking of postcrack edges in the shear strain-dominated cracks, which is potentially useful for the rational design of 2D stacking contacts in atomic width. Our studies provide critical insights into the atomistic processes of fracture and unveil the origin of the brittleness in the 2D materials.

14.
Adv Sci (Weinh) ; 7(22): 2001742, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33240756

RESUMEN

In bulk crystals, the kinetics of dislocations is usually hindered by the twining boundaries (TB) or grain boundaries (GB), rendering the well-known grain boundary strengthening effects. Nevertheless, here it is found that in 2D rhenium disulfide (ReS2), twinning is much easier than dislocation slip. Consequently, the highly mobile TBs or GBs are inversely pinned by the relatively immobile dislocations. Due to the strong in-plane covalent bonding, the GBs in high-symmetry 2D materials such as graphene which consists of defects are immobile at room temperature. In contrast, in monoclinic 2D ReS2 several types of GBs (including TBs) can be readily generated and driven by mechanical loading. A complete library of the GBs in 2D ReS2 is established by the (in situ) atomic-scale transmission electron microscopy (TEM) characterizations and density functional theory (DFT) calculations. The twinning (shear) stresses for 2D ReS2 are estimated as low as 4-30 MPa, one or two orders of magnitude lower than the traditional bulk materials. Full elucidation on the GB structures and especially the intriguing GB kinetics in such anisotropic 2D materials are of fundamental importance to understand the structure-property relationships and develop strain-tunable applications for 2D materials in future.

15.
Nano Lett ; 20(11): 8420-8425, 2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-33104360

RESUMEN

Achieving two-dimensionally (2D) ordered surface wrinkle patterns is still challenging not only for the atomic-thick 2D materials but also in general for all soft surfaces. Normally disordered 2D wrinkle patterns on isotropic surfaces can be rendered via biaxial straining. Here, we report that the 1D and 2D ordered wrinkle patterns in 2D materials can be produced by sequential wrinkling controlled by thermal straining and vertical spatial confinement. The various hierarchical patterns in 2D materials generated by our method are highly periodic, and the hexagonal crystal symmetry is obeyed. More interestingly, these patterns can be maintained in suspended monolayers after delamination from the underlying surfaces which shows the great application potentials. Our new approach can simplify the patterning processes on 2D layered materials and reduce the risk of damage compared to conventional lithography methods, and numerous engineering applications that require nanoscale ordered surface texturing could be empowered.

16.
Nat Commun ; 11(1): 3982, 2020 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-32770067

RESUMEN

Electrical contact is an essential issue for all devices. Although the contacts of the emergent two-dimensional materials have been extensively investigated, it is still challenging to produce excellent contacts. The face and edge type contacts have been applied previously, however a comparative study on the site-specific contact performances is lacking. Here we report an in situ transmission electron microscopy study on the contact properties with a series of 2D materials. By manipulating the contact configurations in real time, it is confirmed that, for 2D semiconductors the vdW type face contacts exhibit superior conductivity compared with the non-vdW type contacts. The direct quantum tunneling across the vdW bonded interfaces are virtually more favorable than the Fowler-Nordheim tunneling across chemically bonded interfaces for contacts. Meanwhile, remarkable area, thickness, geometry, and defect site dependences are revealed. Our work sheds light on the significance of contact engineering for 2D materials in future applications.

17.
Adv Sci (Weinh) ; 7(10): 1903680, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32440484

RESUMEN

Owing to their high robustness and conductivity, 2D transition metal carbides and nitrides known as MXenes are considered as a promising material class for electrochemical catalysis, energy conversion, and storage applications. Nevertheless, conventional hazardous fluoride-based synthesis routes and the intense intralayer bonding restrict the development of MXenes. Herein, a fluoride-free, facile, and rapid method for synthesizing self-assembled 1D architecture from an MXene-based compound is reported. The MXene nanowire (NW) not only provides a robust connection to the flexible substrate but also effectively increases the electrochemically active surface area. The kinetics-favorable structure yields a boosted performance for the hydrogen/oxygen evolution reaction and the intake of the zinc ion. The 1D NW based on MXene compound maintains high stability in a quite low overpotential of 236 mV for 24 h without detachment from the substrate and manifests an exceptional high-power density of 420 W kg-1 over 150 cycles as a flexible aqueous zinc ion battery. This work paves a novel and non-toxic synthesis method for the 1D nanofiber structure from MXene composition and demonstrates its multifunctional applications for energy conversion and storage.

18.
Nano Lett ; 20(4): 2747-2755, 2020 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-32186387

RESUMEN

Hybrid perovskite single-crystalline thin films are promising for making high-performance perovskite optoelectronic devices due to their superior physical properties. However, it is still challenging to incorporate them into multilayer devices because of their on-substrate growth. Here, a wet transfer method is used in transferring perovskite single-crystalline films perfectly onto various target substrates. More importantly, large millimeter-scaled single-crystalline films can be obtained via a diffusion-facilitated space-confined growth method as thin as a few hundred nanometers, which are capable of sustaining excellent crystalline quality and morphology after the transferring process. The availability of these crystalline films offers us a convenient route to further investigate their intrinsic properties of hybrid perovskites. We also demonstrate that the wet transfer method can be used for scalable fabrication of perovskite single-crystalline film-based photodetectors exhibiting a remarkable photoresponsivity. It is expected that this transferring strategy would promise broad applications of perovskite single-crystalline films for more complex perovskite devices.

19.
ACS Nano ; 14(2): 2137-2144, 2020 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-31951371

RESUMEN

The emergent two-dimensional (2D) materials are atomically thin and ultraflexible, promising for a variety of miniaturized, high-performance, and flexible devices in applications. On one hand, the ultrahigh flexibility causes problems: the prevalent wrinkles in 2D materials may undermine the ideal properties and create barriers in fabrication, processing, and quality control of materials. On the other hand, in some cases the wrinkles are used for the architecturing of surface texture and the modulation of physical/chemical properties. Therefore, a thorough understanding of the mechanism and stability of wrinkles is highly needed. Herein, we report a critical length for stabilizing the wrinkles in 2D materials, observed in the wrinkling and wrinkle elimination processes upon thermal annealing as well as by our in situ TEM manipulations on individual wrinkles, which directly capture the evolving wrinkles with variable lengths. The experiments, mechanical modeling, and self-consistent charge density functional tight binding (SCC-DFTB) simulations reveal that a minimum critical length is required for stabilizing the wrinkles in 2D materials. Wrinkles with lengths below a critical value are unstable and removable by thermal annealing, while wrinkles with lengths above a critical value are self-stabilized by van der Waals interactions. It additionally confirms the pronounced frictional effects in wrinkles with lengths above critical value during dynamical movement or sliding.

20.
Phys Rev Lett ; 125(24): 246102, 2020 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-33412019

RESUMEN

The formation, propagation, and structure of nanoscale cracks determine the failure mechanics of engineered materials. Herein, we have captured, with atomic resolution and in real time, unit cell-by-unit cell lattice-trapped cracking in two-dimensional (2D) rhenium disulfide (ReS_{2}) using in situ aberration corrected scanning transmission electron microscopy (STEM). Our real time observations of atomic configurations and corresponding strain fields in propagating cracks directly reveal the atomistic fracture mechanisms. The entirely brittle fracture with non-blunted crack tips as well as perfect healing of cracks have been observed. The mode I fracture toughness of 2D ReS_{2} is measured. Our experiments have bridged the linear elastic deformation zone and the ultimate nm-sized nonlinear deformation zone inside the crack tip. The dynamics of fracture has been explained by the atomic lattice trapping model. The direct visualization on the strain field in the ongoing crack tips and the gained insights of discrete bond breaking or healing in cracks will facilitate deeper insights into how atoms are able to withstand exceptionally large strains at the crack tips.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA