Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
IEEE Trans Biomed Eng ; 69(3): 1085-1092, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34543186

RESUMEN

OBJECTIVE: Peripheral neural interface (PNI) with a stable integration of synthetic elements with neural tissue is key for successfulneuro-prosthetic applications. An inevitable phenomenon of reactive fibrosis is a primary hurdle for long term functionality of PNIs. This proof-of-concept study aimed to fabricate and test a novel, stable PNI that harnesses fibro-axonal outgrowth at the nerve end and includes fibrosis in the design. METHODS: Two non-human primates were implanted with Substrate-guided, Tissue-Electrode Encapsulation and Integration (STEER) PNIs. The implant included a 3D printed guide that strove to steer the regrowing nerve towards encapsulation of the electrodes into a fibro-axonal tissue. After four months from implantation, we performed electrophysiological measurements to test STEER's functionality and examined the macro and micro- morphology of the outgrowth tissue. RESULTS: We observed a highly structured fibro-axonal composite within the STEER PNI. A conduction of intracranially generated action potentials was successfully recorded across the neural interface. Immunohistology demonstrated uniquely configured laminae of myelinated axons encasing the implant. CONCLUSION: STEER PNI reconfigured the structure of the fibro-axonal tissue and facilitated long-term functionality and stability of the neural interface. SIGNIFICANCE: The results point to the feasibility of our concept for creating a stable PNI with long-term electrophysiologic functionality by using simple design and materials.


Asunto(s)
Axones , Nervios Periféricos , Animales , Axones/fisiología , Electrodos Implantados , Nervios Periféricos/fisiología , Primates , Impresión Tridimensional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...