Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Purinergic Signal ; 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38374492

RESUMEN

Stimulation of sympathetic nerves in the vas deferens yields biphasic contractions consisting of a rapid transient component resulting from activation of P2X1 receptors by ATP and a secondary sustained component mediated by activation of α1-adrenoceptors by noradrenaline. Noradrenaline can also potentiate the ATP-dependent contractions of the vas deferens, but the mechanisms underlying this effect are unclear. The purpose of the present study was to investigate the mechanisms underlying potentiation of transient contractions of the vas deferens induced by activation of α1-adrenoceptors. Contractions of the mouse vas deferens were induced by electric field stimulation (EFS). Delivery of brief (1s duration) pulses (4 Hz) yielded transient contractions that were inhibited tetrodotoxin (100 nM) and guanethidine (10 µM). α,ß-meATP (10 µM), a P2X1R desensitising agent, reduced the amplitude of these responses by 65% and prazosin (100 nM), an α1-adrenoceptor antagonist, decreased mean contraction amplitude by 69%. Stimulation of α1-adrenoceptors with phenylephrine (3 µM) enhanced EFS and ATP-induced contractions and these effects were mimicked by the phorbol ester PDBu (1 µM), which activates PKC. The PKC inhibitor GF109203X (1 µM) prevented the stimulatory effects of PDBu on ATP-induced contractions of the vas deferens but only reduced the stimulatory effects of phenylephrine by 40%. PDBu increased the amplitude of ATP-induced currents recorded from freshly isolated vas deferens myocytes and HEK-293 cells expressing human P2X1Rs by 93%. This study indicates that: (1) potentiation of ATP-evoked contractions of the mouse vas deferens by α1-adrenoceptor activation were not fully blocked by the PKC inhibitor GF109203X and (2) that the stimulatory effect of PKC on ATP-induced contractions of the vas deferens is associated with enhanced P2X1R currents in vas deferens myocytes.

2.
Function (Oxf) ; 3(6): zqac050, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36325515

RESUMEN

Beta-adrenoceptor (ß-AR) agonists inhibit cholinergic contractions of airway smooth muscle (ASM), but the underlying mechanisms are unclear. ASM cells express M3 and M2 muscarinic receptors, but the bronchoconstrictor effects of acetylcholine are believed to result from activation of M3Rs, while the role of the M2Rs is confined to offsetting ß-AR-dependent relaxations. However, a profound M2R-mediated hypersensitization of M3R-dependent contractions of ASM was recently reported, indicating an important role for M2Rs in cholinergic contractions of ASM. Here, we investigated if M2R-dependent contractions of murine bronchial rings were inhibited by activation of ß-ARs. M2R-dependent contractions were apparent at low frequency (2Hz) electric field stimulation (EFS) and short (10s) stimulus intervals. The ß1-AR agonist, denopamine inhibited EFS-evoked contractions of ASM induced by reduction in stimulus interval from 100 to 10 s and was more effective at inhibiting contractions evoked by EFS at 2 than 20 Hz. Denopamine also abolished carbachol-evoked contractions that were resistant to the M3R antagonist 4-DAMP, similar to the effects of the M2R antagonists, methoctramine and AFDX-116. The inhibitory effects of denopamine on EFS-evoked contractions of ASM were smaller in preparations taken from M2R -/- mice, compared to wild-type (WT) controls. In contrast, inhibitory effects of the ß3-AR agonist, BRL37344, on EFS-evoked contractions of detrusor strips taken from M2R -/- mice were greater than WT controls. These data suggest that M2R-dependent contractions of ASM were inhibited by activation of ß1-ARs and that genetic ablation of M2Rs decreased the efficacy of ß-AR agonists on cholinergic contractions.


Asunto(s)
Contracción Muscular , Receptores Muscarínicos , Ratones , Animales , Receptor Muscarínico M2/genética , Antagonistas Muscarínicos/farmacología , Agonistas Adrenérgicos beta/farmacología , Músculo Liso , Receptores Adrenérgicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...