Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Cancer Lett ; 598: 217087, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38964732

RESUMEN

Human appendix is critical for the maintenance of intestinal homeostasis. Appendicectomy has been the optimal treatment of acute appendicitis, yet the cancer incidence after appendix removal remains unclear. In this territory-wide retrospective cohort study, adult participants who underwent appendicectomy from 2000 to 2018 were retrieved from a population database (n = 43,983), while matched reference participants were retrieved as controls (n = 85,853). After appendicectomy, the overall cancer risk was significantly increased (subdistribution hazard ratio (SHR) = 1.124) compared to the non-appendicectomy group. Appendicectomy-treated males had higher cancer risk than males without appendicectomy (SHR = 1.197), while such difference was not observed in female participants. Significant increase in cancer risk was also observed in elder participants (age >60) with appendicectomy (SHR = 1.390). Appendicectomy was positively correlated with the risk of digestive tract and respiratory cancers including colon (SHR = 1.440), pancreas (SHR = 1.930), and trachea, bronchus, and lung (SHR = 1.394). In contrast, the risk of liver cancer was markedly decreased after appendicectomy (SHR = 0.713). In conclusion, we reported the association of appendicectomy with subsequent cancer incidence. These findings highlight the potential complication after appendix removal and the necessity of post-operative management to monitor and prevent long-term adverse events.

2.
Heliyon ; 10(8): e29572, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38699748

RESUMEN

Sepsis is a life-threatening illness caused by the dysregulated host response to infection. Nevertheless, our current knowledge of the microbial landscape in the blood of septic patients is still limited. Next-generation sequencing (NGS) is a sensitive method to quantitatively characterize microbiomes at various sites of the human body. In this study, we analyzed the blood microbial DNA of 22 adult patients with sepsis and 3 healthy subjects. The presence of non-human DNA was identified in both healthy and septic subjects. Septic patients had a markedly altered microbial DNA profile compared to healthy subjects over α- and ß-diversity. Unexpectedly, the patients could be further divided into two subgroups (C1 and C2) based on ß-diversity analysis. C1 patients showed much higher bacteria, viruses, fungi, and archaea abundance, and a higher level of α-diversity (Chao1, Observed and Shannon index) than both C2 patients and healthy subjects. The most striking difference was seen in the case of Streptomyces violaceusniger, Phenylobacterium sp. HYN0004, Caulobacter flavus, Streptomyces sp. 11-1-2, and Phenylobacterium zucineum, the abundance of which was the highest in the C1 group. Notably, C1 patients had a significantly poorer outcome than C2 patients. Moreover, by analyzing the patterns of microbe-microbe interactions in healthy and septic subjects, we revealed that C1 and C2 patients exhibited distinct co-occurrence and co-exclusion relationships. Together, our study uncovered two distinct microbial signatures in the blood of septic patients. Compositional and ecological analysis of blood microbial DNA may thus be useful in predicting mortality of septic patients.

3.
Clin Gastroenterol Hepatol ; 22(3): 611-620.e12, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37734581

RESUMEN

BACKGROUND AND AIMS: Prospective long-term real-world safety data after fecal microbiota transplantation (FMT) remain limited. We reported long-term outcomes of FMT from a population-based FMT registry in Hong Kong. METHODS: We recruited patients undergoing FMT for recurrent Clostridioides difficile infection (CDI) and non-CDI indications from clinical trials, from June 2013 to April 2022 in Hong Kong. We captured data on demographics, FMT indications and procedures, clinical outcomes and short- to long-term safety. New medical diagnoses were obtained from electronic medical records and independently adjudicated by clinicians. Long-term safety in patients with recurrent CDI was compared with a control group treated with antibiotics. RESULTS: Overall, 123 subjects (median age 53 years, range 13-90 years; 52.0% male) underwent 510 FMTs and were prospectively followed up for a median of 30.3 (range, 1-57.9) months. The most common indication for FMT was type 2 diabetes mellitus. The most common short-term adverse events within 1 month of FMT included diarrhea and abdominal pain. At long-term follow-up beyond 12 months, 16 patients reported 21 new-onset medical conditions confirmed by electronic medical records. All were adjudicated to be unlikely to be related to FMT. There was no new case of inflammatory bowel disease, irritable bowel syndrome, allergy, diabetes mellitus, or psychiatric disorder. In a subgroup of patients with recurrent CDI, FMT was associated with a significantly higher cumulative survival probability compared with matched control subjects. CONCLUSIONS: This prospective real-world data from Asia's first FMT registry demonstrated that FMT has an excellent long-term safety profile. The risk of developing new medical conditions beyond 12 months after FMT is low.


Asunto(s)
Clostridioides difficile , Infecciones por Clostridium , Diabetes Mellitus Tipo 2 , Humanos , Masculino , Adolescente , Adulto Joven , Adulto , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Femenino , Trasplante de Microbiota Fecal/efectos adversos , Trasplante de Microbiota Fecal/métodos , Heces , Hong Kong , Estudios Prospectivos , Resultado del Tratamiento , Recurrencia , Infecciones por Clostridium/terapia
4.
Nutrients ; 15(19)2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37836532

RESUMEN

In view of the limited evidence showing anti-obesity effects of synbiotics via modulation of the gut microbiota in humans, a randomized clinical trial was performed. Assessment of the metabolic syndrome traits and profiling of the fecal gut microbiota using 16S rRNA gene sequencing in overweight and obese Hong Kong Chinese individuals before and after dietary intervention with an 8-week increased consumption of fruits and vegetables and/or synbiotic supplementation was conducted. The selected synbiotic contained two probiotics (Lactobacillus acidophilus NCFM and Bifidobacterium lactis HN019) and a prebiotic (polydextrose). Fifty-five overweight or obese individuals were randomized and divided into a synbiotic group (SG; n = 19), a dietary intervention group (DG; n = 18), and a group receiving combined interventions (DSG; n = 18). DSG showed the greatest weight loss effects and number of significant differences in clinical parameters compared to its baseline values-notably, decreases in fasting glucose, insulin, HOMA-IR, and triglycerides and an increase in HDL-cholesterol. DSG lowered Megamonas abundance, which was positively associated with BMI, body fat mass, and trunk fat mass. The results suggested that increasing dietary fiber consumption from fruits and vegetables combined with synbiotic supplementation is more effective than either approach alone in tackling obesity.


Asunto(s)
Microbioma Gastrointestinal , Síndrome Metabólico , Probióticos , Simbióticos , Humanos , Método Doble Ciego , Pueblos del Este de Asia , Hong Kong , Síndrome Metabólico/terapia , Obesidad/terapia , Sobrepeso/terapia , ARN Ribosómico 16S , Fibras de la Dieta
5.
Comput Struct Biotechnol J ; 21: 4804-4815, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37841330

RESUMEN

The human microbiome is an emerging research frontier due to its profound impacts on health. High-throughput microbiome sequencing enables studying microbial communities but suffers from analytical challenges. In particular, the lack of dedicated preprocessing methods to improve data quality impedes effective minimization of biases prior to downstream analysis. This review aims to address this gap by providing a comprehensive overview of preprocessing techniques relevant to microbiome research. We outline a typical workflow for microbiome data analysis. Preprocessing methods discussed include quality filtering, batch effect correction, imputation of missing values, normalization, and data transformation. We highlight strengths and limitations of each technique to serve as a practical guide for researchers and identify areas needing further methodological development. Establishing robust, standardized preprocessing will be essential for drawing valid biological conclusions from microbiome studies.

6.
Cancer Cell ; 41(8): 1450-1465.e8, 2023 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-37478851

RESUMEN

Carnobacterium maltaromaticum was found to be specifically depleted in female patients with colorectal cancer (CRC). Administration of C. maltaromaticum reduces intestinal tumor formation in two murine CRC models in a female-specific manner. Estrogen increases the attachment and colonization of C. maltaromaticum via increasing the colonic expression of SLC3A2 that binds to DD-CPase of this bacterium. Metabolomic and transcriptomic profiling unveils the increased gut abundance of vitamin D-related metabolites and the mucosal activation of vitamin D receptor (VDR) signaling in C. maltaromaticum-gavaged mice in a gut microbiome- and VDR-dependent manner. In vitro fermentation system confirms the metabolic cross-feeding of C. maltaromaticum with Faecalibacterium prausnitzii to convert C. maltaromaticum-produced 7-dehydrocholesterol into vitamin D for activating the host VDR signaling. Overall, C. maltaromaticum colonizes the gut in an estrogen-dependent manner and acts along with other microbes to augment the intestinal vitamin D production to activate the host VDR for suppressing CRC.


Asunto(s)
Neoplasias Colorrectales , Vitamina D , Ratones , Femenino , Animales , Vitamina D/metabolismo , Carnobacterium/metabolismo , Estrógenos/metabolismo , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo
7.
Foods ; 12(13)2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37444223

RESUMEN

A new next-generation probiotic, Christensenella minuta was first discovered in 2012 from healthy human stool and described under the phylum Firmicutes. C. minuta is a subdominant commensal bacterium with highly heritable properties that exhibits mutual interactions with other heritable microbiomes, and its relative abundance is positively correlated with the lean host phenotype associated with a low BMI index. It has been the subject of numerous studies, owing to its potential health benefits. This article reviews the evidence from various studies of C. minuta interventions using animal models for managing metabolic diseases, such as obesity, inflammatory bowel disease, and type 2 diabetes, characterized by gut microbiota dysbiosis and disruption of host metabolism. Notably, more studies have presented the complex interaction between C. minuta and host metabolism when it comes to metabolic health. Therefore, C. minuta could be a potential candidate for innovative microbiome-based biotherapy via fecal microbiota transplantation or oral administration. However, the detailed underlying mechanism of action requires further investigation.

8.
Nat Commun ; 14(1): 2501, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37130861

RESUMEN

The microbiota-gut-brain axis has been suggested to play an important role in Parkinson's disease (PD). Here we performed a cross-sectional study to profile gut microbiota across early PD, REM sleep behavior disorder (RBD), first-degree relatives of RBD (RBD-FDR), and healthy controls, which could reflect the gut-brain staging model of PD. We show gut microbiota compositions are significantly altered in early PD and RBD compared with control and RBD-FDR. Depletion of butyrate-producing bacteria and enrichment of pro-inflammatory Collinsella have already emerged in RBD and RBD-FDR after controlling potential confounders including antidepressants, osmotic laxatives, and bowel movement frequency. Random forest modelling identifies 12 microbial markers that are effective to distinguish RBD from control. These findings suggest that PD-like gut dysbiosis occurs at the prodromal stages of PD when RBD develops and starts to emerge in the younger RBD-FDR subjects. The study will have etiological and diagnostic implications.


Asunto(s)
Microbioma Gastrointestinal , Enfermedad de Parkinson , Trastorno de la Conducta del Sueño REM , Humanos , Enfermedad de Parkinson/diagnóstico , Microbioma Gastrointestinal/genética , Estudios Transversales , Disbiosis/complicaciones
9.
Int J Mol Sci ; 24(6)2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36982702

RESUMEN

Blood is conventionally thought to be sterile. However, emerging evidence on the blood microbiome has started to challenge this notion. Recent reports have revealed the presence of genetic materials of microbes or pathogens in the blood circulation, leading to the conceptualization of a blood microbiome that is vital for physical wellbeing. Dysbiosis of the blood microbial profile has been implicated in a wide range of health conditions. Our review aims to consolidate recent findings about the blood microbiome in human health and to highlight the existing controversies, prospects, and challenges around this topic. Current evidence does not seem to support the presence of a core healthy blood microbiome. Common microbial taxa have been identified in some diseases, for instance, Legionella and Devosia in kidney impairment, Bacteroides in cirrhosis, Escherichia/Shigella and Staphylococcus in inflammatory diseases, and Janthinobacterium in mood disorders. While the presence of culturable blood microbes remains debatable, their genetic materials in the blood could potentially be exploited to improve precision medicine for cancers, pregnancy-related complications, and asthma by augmenting patient stratification. Key controversies in blood microbiome research are the susceptibility of low-biomass samples to exogenous contamination and undetermined microbial viability from NGS-based microbial profiling, however, ongoing initiatives are attempting to mitigate these issues. We also envisage future blood microbiome research to adopt more robust and standardized approaches, to delve into the origins of these multibiome genetic materials and to focus on host-microbe interactions through the elaboration of causative and mechanistic relationships with the aid of more accurate and powerful analytical tools.


Asunto(s)
Legionella , Microbiota , Humanos , Interacciones Microbiota-Huesped , Disbiosis/microbiología , Predicción
10.
J Clin Transl Hepatol ; 11(3): 718-735, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-36969905

RESUMEN

The outbreak of coronavirus disease 2019 (COVID-19) has resulted in significant morbidity and mortality worldwide. Vaccination against coronavirus disease 2019 is a useful weapon to combat the virus. Patients with chronic liver diseases (CLDs), including compensated or decompensated liver cirrhosis and noncirrhotic diseases, have a decreased immunologic response to coronavirus disease 2019 vaccines. At the same time, they have increased mortality if infected. Current data show a reduction in mortality when patients with chronic liver diseases are vaccinated. A suboptimal vaccine response has been observed in liver transplant recipients, especially those receiving immunosuppressive therapy, so an early booster dose is recommended to achieve a better protective effect. Currently, there are no clinical data comparing the protective efficacy of different vaccines in patients with chronic liver diseases. Patient preference, availability of the vaccine in the country or area, and adverse effect profiles are factors to consider when choosing a vaccine. There have been reports of immune-mediated hepatitis after coronavirus disease 2019 vaccination, and clinicians should be aware of that potential side effect. Most patients who developed hepatitis after vaccination responded well to treatment with prednisolone, but an alternative type of vaccine should be considered for subsequent booster doses. Further prospective studies are required to investigate the duration of immunity and protection against different viral variants in patients with chronic liver diseases or liver transplant recipients, as well as the effect of heterologous vaccination.

11.
Gastroenterology ; 164(5): 766-782, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36738977

RESUMEN

Hepatocellular carcinoma (HCC) is one of the leading cancers worldwide. Classically, HCC develops in genetically susceptible individuals who are exposed to risk factors, especially in the presence of liver cirrhosis. Significant temporal and geographic variations exist for HCC and its etiologies. Over time, the burden of HCC has shifted from the low-moderate to the high sociodemographic index regions, reflecting the transition from viral to nonviral causes. Geographically, the hepatitis viruses predominate as the causes of HCC in Asia and Africa. Although there are genetic conditions that confer increased risk for HCC, these diagnoses are rarely recognized outside North America and Europe. In this review, we will evaluate the epidemiologic trends and risk factors of HCC, and discuss the genetics of HCC, including monogenic diseases, single-nucleotide polymorphisms, gut microbiome, and somatic mutations.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/epidemiología , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/epidemiología , Neoplasias Hepáticas/genética , Cirrosis Hepática/epidemiología , Cirrosis Hepática/genética , Cirrosis Hepática/complicaciones , Factores de Riesgo , América del Norte/epidemiología
12.
Oncogene ; 42(7): 530-540, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36539569

RESUMEN

Appendectomy impacts the homeostasis of gut microbiome in patients. We aimed to study the role of appendectomy in colorectal cancer (CRC) risk through causing gut microbial dysbiosis. Population-based longitudinal study (cohort 1, n = 129,155) showed a 73.0% increase in CRC risk among appendectomy cases throughout 20 years follow-up (Adjusted sub-distribution hazard ratio (SHR) 1.73, 95% CI 1.49-2.01, P < 0.001). Shotgun metagenomic sequencing was performed on fecal samples from cohort 2 (n = 314). Gut microbial dysbiosis in appendectomy subjects was observed with significant enrichment of 7 CRC-promoting bacteria (Bacteroides vulgatus, Bacteroides fragilis, Veillonella dispar, Prevotella ruminicola, Prevotella fucsa, Prevotella dentalis, Prevotella denticola) and depletion of 5 beneficial commensals (Blautia sp YL58, Enterococcus hirae, Lachnospiraceae bacterium Choco86, Collinsella aerofaciens, Blautia sp SC05B48). Microbial network analysis showed increased correlation strengths among enriched bacteria and their enriched oncogenic pathways in appendectomy subjects compared to controls. Of which, B. fragilis was the centrality in the network of the enriched bacteria. We further confirmed that appendectomy promoted colorectal tumorigenesis in mice by causing gut microbial dysbiosis and impaired intestinal barrier function. Collectively, this study revealed appendectomy-induced microbial dysbiosis characterized by enriched CRC-promoting bacteria and depleted beneficial commensals, signifying that the gut microbiome may play a crucial role in CRC development induced by appendectomy.


Asunto(s)
Neoplasias Colorrectales , Microbioma Gastrointestinal , Animales , Ratones , Microbioma Gastrointestinal/genética , Disbiosis/microbiología , Apendicectomía/efectos adversos , Estudios Longitudinales , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/microbiología
13.
Nutrients ; 14(17)2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-36079829

RESUMEN

The ketogenic diet (KD) has been important in treating epilepsy since the 1920s. The benefits of KD further expanded to other neurological diseases, including Alzheimer's diseases, autism spectrum disorder, and nutritional disorder (obesity). Although the therapeutic efficacy of KD has been generally accepted, there is limited knowledge about its underlying mechanism of action, particularly its effect on our gut microbiome. Gut dysbiosis has been proposed to be involved in those diseases, and KD can promote gut microbiota remodeling that may assist in recovery. This review explores the therapeutic applications of KD, the roles of the gut microbiome in neurological diseases and obesity, as well as the effect of KD on the gut microbiome. The present information suggests that KD has significant roles in altering the gut microbiome to improve disease symptoms, mainly by incrementing Bacteroidetes to Firmicutes (B/F) ratio and reducing Proteobacteria in certain cases. However, current gaps call for continued research to understand better the gut microbiota profile altered by KD.


Asunto(s)
Trastorno del Espectro Autista , Dieta Cetogénica , Epilepsia , Microbioma Gastrointestinal , Trastornos Nutricionales , Humanos , Obesidad
14.
Food Chem Toxicol ; 169: 113368, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36087619

RESUMEN

Silver (nAg) and titanium dioxide (nTiO2) nanoparticles improve texture, flavour or anti-microbial properties of various food products and packaging materials. Despite their increased oral exposure, their potential toxicities in the dysfunctional intestine are unclear. Here, the effects of ingested nAg or nTiO2 on inflamed colon were revealed in a mouse model of chemical-induced acute ulcerative colitis. Mice (eight/group) were exposed to nAg or nTiO2 by oral gavage for 10 consecutive days. We characterized disease phenotypes, histology, and alterations in colonic transcriptome (RNA sequencing) and gut microbiome (16S sequencing). Oral exposure to nAg caused only minor changes in phenotypic hallmarks of colitic mice but induced extensive responses in gene expression enriching processes of apoptotic cell death and RNA metabolism. Instead, ingested nTiO2 yielded shorter colon, aggravated epithelial hyperplasia and deeper infiltration of inflammatory cells. Both nanoparticles significantly changed the gut microbiota composition, resulting in loss of diversity and increase of potential pathobionts. They also increased colonic mucus and abundance of Akkermansia muciniphila. Overall, nAg and nTiO2 induce dissimilar immunotoxicological changes at the molecular and microbiome level in the context of colon inflammation. The results provide valuable information for evaluation of utilizing metallic nanoparticles in food products for the vulnerable population.


Asunto(s)
Colitis Ulcerosa , Colon , Microbioma Gastrointestinal , Nanopartículas del Metal , Plata , Titanio , Animales , Ratones , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/metabolismo , Colon/efectos de los fármacos , Colon/microbiología , Sulfato de Dextran , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , ARN/metabolismo , Plata/toxicidad , Titanio/toxicidad , Transcriptoma , Nanopartículas del Metal/toxicidad
15.
Oncogene ; 41(36): 4200-4210, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35882981

RESUMEN

Large-scale fecal shotgun metagenomic sequencing revealed the high abundance of Parvimonas micra in colorectal cancer (CRC) patients. We investigated the role and clinical significance of P. micra in colorectal tumorigenesis. The abundance of P. micra was examined in 309 fecal samples and 165 colon biopsy tissues of CRC patients and healthy subjects. P. micra was significantly enriched in fecal samples from 128 CRC patients compared to 181 healthy subjects (P < 0.0001); and in colon tissue biopsies from 52 CRC patients compared to 61 healthy subjects (P < 0.0001). Multivariate analysis showed that P. micra is an independent risk factor of poor survival in CRC patients (Hazard Ratio: 1.93). P. micra strain was isolated from feces of a CRC patient. Apcmin/+ mice gavaged with P. micra showed significantly higher tumor burden and tumor load (both P < 0.01). Consistently, gavage of P. micra significantly promoted colonocyte proliferation in conventional mice, which was further confirmed by germ-free mice. P. micra colonization up-regulated genes involved in cell proliferation, stemness, angiogenesis and invasiveness/metastasis; and enhanced Th17 cells infiltration and expression of Th17 cells-secreted cytokines (Il-17, Il-22, and Il-23) in the colon of Apcmin/+, conventional and germ-free mice. P. micra-conditioned medium significantly promoted the differentiation of CD4+ T cells to Th17 cells (IL-17+CD4+ phenotype) and enhanced the oncogenic Wnt signaling pathway. In conclusion, P. micra promoted colorectal tumorigenesis in mice by inducing colonocyte proliferation and altering Th17 immune response. P. micra may act as a prognostic biomarker for poor survival of CRC patients.


Asunto(s)
Neoplasias Colorrectales , Interleucina-17 , Animales , Carcinogénesis/genética , Proliferación Celular , Neoplasias Colorrectales/patología , Firmicutes , Regulación Neoplásica de la Expresión Génica , Humanos , Interleucina-17/metabolismo , Ratones
16.
Oncogene ; 41(28): 3599-3610, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35680985

RESUMEN

The consistency of the associations between gastric mucosal microbiome and gastric cancer across studies remained unexamined. We aimed to identify universal microbial signatures in gastric carcinogenesis through a meta-analysis of gastric microbiome from multiple studies. Compositional and ecological profiles of gastric microbes across stages of gastric carcinogenesis were significantly altered. Meta-analysis revealed that opportunistic pathobionts Fusobacterium, Parvimonas, Veillonella, Prevotella and Peptostreptococcus were enriched in GC, while commensals Bifidobacterium, Bacillus and Blautia were depleted in comparison to SG. The co-occurring correlation strengths of GC-enriched bacteria were increased along disease progression while those of GC-depleted bacteria were decreased. Eight bacterial taxa, including Veillonella, Dialister, Granulicatella, Herbaspirillum, Comamonas, Chryseobacterium, Shewanella and Helicobacter, were newly identified by this study as universal biomarkers for robustly discriminating GC from SG, with an area under the curve (AUC) of 0.85. Moreover, H. pylori-positive samples exhibited reduced microbial diversity, altered microbiota community and weaker interactions among gastric microbes. Our meta-analysis demonstrated comprehensive and generalizable gastric mucosa microbial features associated with histological stages of gastric carcinogenesis, including GC associated bacteria, diagnostic biomarkers, bacterial network alteration and H. pylori influence.


Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Microbiota , Neoplasias Gástricas , Carcinogénesis/patología , Disbiosis/microbiología , Mucosa Gástrica/patología , Infecciones por Helicobacter/complicaciones , Humanos , Estómago/patología , Neoplasias Gástricas/patología
17.
Gastroenterology ; 163(4): 908-921, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35724733

RESUMEN

BACKGROUND & AIMS: The enteric mycobiota is a major component of the human gut microbiota, but its role in colorectal cancer (CRC) remains largely elusive. We conducted a meta-analysis to uncover the contribution of the fungal mycobiota to CRC. METHODS: We retrieved fecal metagenomic data sets from 7 previous publications and established an additional in-house cohort, totaling 1329 metagenomes (454 with CRC, 350 with adenoma, and 525 healthy individuals). Mycobiota composition and microbial interactions were analyzed. Candidate CRC-enriched fungal species (Aspergillus rambellii) was functionally validated in vitro and in vivo. RESULTS: Multicohort analysis revealed that the enteric mycobiota was altered in CRC. We identified fungi that were associated with patients with CRC or adenoma from multiple cohorts. Signature CRC-associated fungi included 6 enriched (A rambellii, Cordyceps sp. RAO-2017, Erysiphe pulchra, Moniliophthora perniciosa, Sphaerulina musiva, and Phytophthora capsici) and 1 depleted species (A kawachii). Co-occurrent interactions among CRC-enriched fungi became stronger in CRC compared with adenoma and healthy individuals. Moreover, we reported the transkingdom interactions between enteric fungi and bacteria in CRC progression, of which A rambellii was closely associated with CRC-enriched bacteria Fusobacterium nucleatum. A rambellii promoted CRC cell growth in vitro and tumor growth in xenograft mice. We further identified that combined fungal and bacterial biomarkers were more accurate than panels with pure bacterial species to discriminate patients with CRC from healthy individuals (the area under the curve relative change increased by 1.44%-10.60%). CONCLUSIONS: This study reveals enteric mycobiota signatures and pathogenic fungi in stages of colorectal tumorigenesis. Fecal fungi can be used, in addition to bacteria, for noninvasive diagnosis of patients with CRC.


Asunto(s)
Adenoma , Neoplasias Colorrectales , Adenoma/microbiología , Animales , Aspergillus , Bacterias/genética , Biomarcadores , Transformación Celular Neoplásica , Neoplasias Colorrectales/diagnóstico , Heces/microbiología , Humanos , Metagenoma , Ratones
18.
Biomedicines ; 10(5)2022 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-35625774

RESUMEN

Evidence has shown that gut microbiome plays a role in modulating the development of diseases beyond the gastrointestinal tract, including skin disorders such as psoriasis. The gut-skin axis refers to the bidirectional relationship between the gut microbiome and skin health. This is regulated through several mechanisms such as inflammatory mediators and the immune system. Dysregulation of microbiota has been seen in numerous inflammatory skin conditions such as atopic dermatitis, rosacea, and psoriasis. Understanding how gut microbiome are involved in regulating skin health may lead to development of novel therapies for these skin disorders through microbiome modulation, in particularly psoriasis. In this review, we will compare the microbiota between psoriasis patients and healthy control, explain the concept of gut-skin axis and the effects of gut dysbiosis on skin physiology. We will also review the current evidence on modulating gut microbiome using probiotics in psoriasis.

19.
Oncogene ; 41(23): 3278-3288, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35523946

RESUMEN

Cancer-related genes have evolved specific genetic and genomic features to favor tumor suppression. Previously we reported that tumor suppressor genes (TSGs) acquired high promoter CpG dinucleotide frequencies during evolution to maintain high expression in normal tissues and resist cancer-specific downregulation. In this study, we investigated whether 3'untranslated regions (3'UTRs) of TSGs have evolved specific features to carry out similar functions. We found that 3'UTRs of TSGs, especially those involved in multiple histological types and pediatric cancers, are longer than those of non-cancer genes. 3'UTRs of TSGs also exhibit higher density of binding sites for RNA-binding proteins (RBPs), particularly those having high affinities to C-rich motifs. Both longer 3'UTR length and RBP binding sites enrichment are correlated with higher gene expression in normal tissues across tissue types. Moreover, both features together with the correlated N6-methyladenosine modification and the extent of protein-protein interactions are positively associated with the ability of TSGs to resist cancer-specific downregulation. These results were successfully validated with independent datasets. Collectively, these findings indicate that TSGs have evolved longer 3'UTR with increased propensity to RBP binding, N6-methyladenosine modification and protein-protein interactions for optimizing their tumor-suppressing functions.


Asunto(s)
Genes Supresores de Tumor , Neoplasias , Regiones no Traducidas 3'/genética , Sitios de Unión/genética , Niño , Humanos , Neoplasias/genética , Neoplasias/patología , Regiones Promotoras Genéticas
20.
Cancer Res ; 82(8): 1482-1491, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35247889

RESUMEN

Cancer-related genes are under intense evolutionary pressure. In this study, we conjecture that X-linked tumor suppressor genes (TSG) are not protected by the Knudson's two-hit mechanism and are therefore subject to negative selection. Accordingly, nearly all mammalian species exhibited lower TSG-to-noncancer gene ratios on their X chromosomes compared with nonmammalian species. Synteny analysis revealed that mammalian X-linked TSGs were depleted shortly after the emergence of the XY sex-determination system. A phylogeny-based model unveiled a higher X chromosome-to-autosome relocation flux for human TSGs. This was verified in other mammals by assessing the concordance/discordance of chromosomal locations of mammalian TSGs and their orthologs in Xenopus tropicalis. In humans, X-linked TSGs are younger or larger in size. Consistently, pan-cancer analysis revealed more frequent nonsynonymous somatic mutations of X-linked TSGs. These findings suggest that relocation of TSGs out of the X chromosome could confer a survival advantage by facilitating evasion of single-hit inactivation. SIGNIFICANCE: This work unveils extensive trafficking of TSGs from the X chromosome to autosomes during evolution, thus identifying X-linked TSGs as a genetic Achilles' heel in tumor suppression.


Asunto(s)
Evolución Molecular , Genes Supresores de Tumor , Neoplasias , Cromosoma X , Animales , Humanos , Mamíferos/genética , Neoplasias/genética , Oncogenes , Sintenía , Cromosoma X/genética , Xenopus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...