Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 9(17): eade2675, 2023 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-37115922

RESUMEN

Glioma is a rare brain tumor with a poor prognosis. Familial glioma is a subset of glioma with a strong genetic predisposition that accounts for approximately 5% of glioma cases. We performed whole-genome sequencing on an exploratory cohort of 203 individuals from 189 families with a history of familial glioma and an additional validation cohort of 122 individuals from 115 families. We found significant enrichment of rare deleterious variants of seven genes in both cohorts, and the most significantly enriched gene was HERC2 (P = 0.0006). Furthermore, we identified rare noncoding variants in both cohorts that were predicted to affect transcription factor binding sites or cause cryptic splicing. Last, we selected a subset of discovered genes for validation by CRISPR knockdown screening and found that DMBT1, HP1BP3, and ZCH7B3 have profound impacts on proliferation. This study performs comprehensive surveillance of the genomic landscape of familial glioma.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Glioma/genética , Glioma/patología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Genómica , Predisposición Genética a la Enfermedad , Secuenciación Completa del Genoma , Proteínas de Unión al Calcio/genética , Proteínas de Unión al ADN/genética , Proteínas Supresoras de Tumor/genética
3.
Cancer Res ; 80(23): 5393-5407, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33046443

RESUMEN

Medulloblastoma is among the most common malignant brain tumors in children. Recent studies have identified at least four subgroups of the disease that differ in terms of molecular characteristics and patient outcomes. Despite this heterogeneity, most patients with medulloblastoma receive similar therapies, including surgery, radiation, and intensive chemotherapy. Although these treatments prolong survival, many patients still die from the disease and survivors suffer severe long-term side effects from therapy. We hypothesize that each patient with medulloblastoma is sensitive to different therapies and that tailoring therapy based on the molecular and cellular characteristics of patients' tumors will improve outcomes. To test this, we assembled a panel of orthotopic patient-derived xenografts (PDX) and subjected them to DNA sequencing, gene expression profiling, and high-throughput drug screening. Analysis of DNA sequencing revealed that most medulloblastomas do not have actionable mutations that point to effective therapies. In contrast, gene expression and drug response data provided valuable information about potential therapies for every tumor. For example, drug screening demonstrated that actinomycin D, which is used for treatment of sarcoma but rarely for medulloblastoma, was active against PDXs representing Group 3 medulloblastoma, the most aggressive form of the disease. Functional analysis of tumor cells was successfully used in a clinical setting to identify more treatment options than sequencing alone. These studies suggest that it should be possible to move away from a one-size-fits-all approach and begin to treat each patient with therapies that are effective against their specific tumor. SIGNIFICANCE: These findings show that high-throughput drug screening identifies therapies for medulloblastoma that cannot be predicted by genomic or transcriptomic analysis.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias Cerebelosas/tratamiento farmacológico , Meduloblastoma/tratamiento farmacológico , Medicina de Precisión/métodos , Animales , Línea Celular Tumoral , Neoplasias Cerebelosas/genética , Niño , Dactinomicina/farmacología , Regulación Neoplásica de la Expresión Génica , Ensayos Analíticos de Alto Rendimiento , Humanos , Masculino , Meduloblastoma/genética , Ratones Endogámicos NOD , Mutación , Polimorfismo de Nucleótido Simple , Secuenciación del Exoma , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Cancer Discov ; 9(4): 526-545, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30709805

RESUMEN

Although the majority of BRAF-mutant melanomas respond to BRAF/MEK inhibitors, these agents are not typically curative. Moreover, they are largely ineffective in NRAS- and NF1-mutant tumors. Here we report that genetic and chemical suppression of HDAC3 potently cooperates with MAPK pathway inhibitors in all three RAS pathway-driven tumors. Specifically, we show that entinostat dramatically enhances tumor regression when combined with BRAF/MEK inhibitors, in both models that are sensitive or relatively resistant to these agents. Interestingly, MGMT expression predicts responsiveness and marks tumors with latent defects in DNA repair. BRAF/MEK inhibitors enhance these defects by suppressing homologous recombination genes, inducing a BRCA-like state; however, addition of entinostat triggers the concomitant suppression of nonhomologous end-joining genes, resulting in a chemical synthetic lethality caused by excessive DNA damage. Together, these studies identify melanomas with latent DNA repair defects, describe a promising drug combination that capitalizes on these defects, and reveal a tractable therapeutic biomarker. SIGNIFICANCE: BRAF/MEK inhibitors are not typically curative in BRAF-mutant melanomas and are ineffective in NRAS- and NF1-mutant tumors. We show that HDAC inhibitors dramatically enhance the efficacy of BRAF/MEK inhibitors in sensitive and insensitive RAS pathway-driven melanomas by coordinately suppressing two DNA repair pathways, and identify a clinical biomarker that predicts responsiveness.See related commentary by Lombard et al., p. 469.This article is highlighted in the In This Issue feature, p. 453.


Asunto(s)
Reparación del ADN/genética , Genes ras/genética , Quinasas Quinasa Quinasa PAM/genética , Melanoma/genética , Humanos , Proteínas Proto-Oncogénicas B-raf
5.
Sci Data ; 1: 140035, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25984343

RESUMEN

Using a genome-scale, lentivirally delivered shRNA library, we performed massively parallel pooled shRNA screens in 216 cancer cell lines to identify genes that are required for cell proliferation and/or viability. Cell line dependencies on 11,000 genes were interrogated by 5 shRNAs per gene. The proliferation effect of each shRNA in each cell line was assessed by transducing a population of 11M cells with one shRNA-virus per cell and determining the relative enrichment or depletion of each of the 54,000 shRNAs after 16 population doublings using Next Generation Sequencing. All the cell lines were screened using standardized conditions to best assess differential genetic dependencies across cell lines. When combined with genomic characterization of these cell lines, this dataset facilitates the linkage of genetic dependencies with specific cellular contexts (e.g., gene mutations or cell lineage). To enable such comparisons, we developed and provided a bioinformatics tool to identify linear and nonlinear correlations between these features.


Asunto(s)
Linaje de la Célula/genética , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Mutación , Línea Celular Tumoral , ADN de Neoplasias , Genómica , Humanos , Neoplasias/genética , Neoplasias/patología , ARN Interferente Pequeño
6.
Gene ; 486(1-2): 65-73, 2011 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-21787851

RESUMEN

In humans, the enzyme telomerase (hTERT) is responsible for the synthesis of new repeat sequences at the telomeres of chromosomes. Although active in early embryogenesis, the hTERT gene is transcriptionally silenced in almost all somatic cells in the adult, but is aberrantly re-activated in over 90% of human cancers. The molecular mechanisms responsible for repression of this gene are thought to involve the transcription factor CTCF. In this study, we bioinformatically identify putative CTCF binding sites in the hTERT proximal exonic region (PER) and determine their functional relevance in mediating transcriptional silencing at this gene. Tests using a reporter gene assay in HeLa cancer cells demonstrate that a sub-region of the PER exhibits strong transcriptional repressive activity. This repression is independent of the previously identified CTCF binding site near the transcriptional start site of the hTERT gene. In addition, site directed mutagenesis of three predicted CTCF binding sites, including a previously characterized in vivo site in exon 2, does not result in a loss of the repression mediated by the PER. The results from this study indicate that expression of the hTERT gene in HeLa cells is regulated by sequences in the PER. This transcriptional control is mediated through additional regulatory molecular mechanisms, independent of CTCF binding.


Asunto(s)
Telomerasa/genética , Secuencia de Bases , Sitios de Unión/genética , Factor de Unión a CCCTC , Biología Computacional , Secuencia Conservada , Cartilla de ADN/genética , Exones , Técnicas de Silenciamiento del Gen , Redes Reguladoras de Genes , Silenciador del Gen , Células HeLa , Humanos , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Plásmidos/genética , ARN Interferente Pequeño/genética , Proteínas Represoras/antagonistas & inhibidores , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Transcripción Genética
7.
Proc Natl Acad Sci U S A ; 108(30): 12372-7, 2011 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-21746896

RESUMEN

A comprehensive understanding of the molecular vulnerabilities of every type of cancer will provide a powerful roadmap to guide therapeutic approaches. Efforts such as The Cancer Genome Atlas Project will identify genes with aberrant copy number, sequence, or expression in various cancer types, providing a survey of the genes that may have a causal role in cancer. A complementary approach is to perform systematic loss-of-function studies to identify essential genes in particular cancer cell types. We have begun a systematic effort, termed Project Achilles, aimed at identifying genetic vulnerabilities across large numbers of cancer cell lines. Here, we report the assessment of the essentiality of 11,194 genes in 102 human cancer cell lines. We show that the integration of these functional data with information derived from surveying cancer genomes pinpoints known and previously undescribed lineage-specific dependencies across a wide spectrum of cancers. In particular, we found 54 genes that are specifically essential for the proliferation and viability of ovarian cancer cells and also amplified in primary tumors or differentially overexpressed in ovarian cancer cell lines. One such gene, PAX8, is focally amplified in 16% of high-grade serous ovarian cancers and expressed at higher levels in ovarian tumors. Suppression of PAX8 selectively induces apoptotic cell death of ovarian cancer cells. These results identify PAX8 as an ovarian lineage-specific dependency. More generally, these observations demonstrate that the integration of genome-scale functional and structural studies provides an efficient path to identify dependencies of specific cancer types on particular genes and pathways.


Asunto(s)
Neoplasias Ováricas/genética , Oxidorreductasas de Alcohol , Secuencia de Bases , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular/genética , Femenino , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Oncogenes , Neoplasias Ováricas/patología , Factor de Transcripción PAX8 , Factores de Transcripción Paired Box/genética , ARN Neoplásico/genética , ARN Interferente Pequeño/genética
8.
DNA Cell Biol ; 29(9): 499-508, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20438356

RESUMEN

Telomeres are regions of repeated DNA sequence that cap the ends of eukaryotic chromosomes. They act as disposable safeguards to prevent the loss of important genetic information during DNA replication due to the inability of DNA polymerase to replicate DNA to the ends of linear chromosomes. The synthesis of new telomeric repeats using an RNA molecule as a template is catalyzed by the enzyme telomerase. In embryonic stem cells, the gene encoding the catalytic protein subunit of the telomerase complex (telomere reverse transcriptase [TERT]) is transcriptionally active and critical for telomere elongation, allowing for continued cellular differentiation during development. The TERT gene is down-regulated as embryogenesis progresses to limit the proliferative capacity of cells. As a result, in normal human adult somatic cells the TERT gene is silenced. However, in over 90% of cancers, the TERT gene is reactivated, allowing cells to bypass senescence and become immortalized. In this study, we explore the molecular mechanisms that regulate transcriptional expression of the TERT gene. Bioinformatic analysis of the noncoding genomic regions around the human TERT gene identified a TERT ultra-conserved (TUC) module located 5 kb upstream of the transcription start site. This 308 bp region is over 75% conserved between distantly related mammalian species and over 91% conserved among primate species. The cis-regulatory potential of the TUC region was tested in cell-based reporter gene assays. Transient transfections into HeLa and lung fibroblast cells demonstrated that the TUC module has transcriptional enhancer activity. Further bioinformatic analysis revealed that the TUC region is highly enriched in putative transcription factor binding sites for proteins involved during hematopoiesis, indicating that the TUC module may be an enhancer for the TERT gene in specific cell lineages.


Asunto(s)
Biología Computacional , Secuencia Conservada , Elementos de Facilitación Genéticos/genética , Telomerasa/genética , Animales , Secuencia de Bases , Perros , Evolución Molecular , Regulación Enzimológica de la Expresión Génica/genética , Genes Reporteros/genética , Genoma/genética , Células HeLa , Humanos , Ratones , Datos de Secuencia Molecular , Primates/genética , Ratas , Transcripción Genética/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...