Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Curr Opin Plant Biol ; 79: 102529, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38604000

RESUMEN

Hypersensitive response-programmed cell death (HR-PCD) is a response mounted by plants to defend themselves against pathogens. Communication between the chloroplast and the nucleus is critical for the progression of HR-PCD. Tubular protrusions of chloroplasts, known as stromules, are tightly associated with the HR-PCD progression. There is emerging evidence that signaling molecules originating from chloroplasts are transferred to the nucleus through stromules. The translocation of signaling molecules from the chloroplast to the nucleus might trigger defense responses, including transcriptional reprogramming. In this review, we discuss the possible functions of stromules in the rapid transfer of signaling molecules in the chloroplast-nucleus communication.


Asunto(s)
Núcleo Celular , Cloroplastos , Inmunidad de la Planta , Cloroplastos/metabolismo , Núcleo Celular/metabolismo , Transducción de Señal
2.
Nat Commun ; 15(1): 1621, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38424448

RESUMEN

Autophagy in eukaryotes functions to maintain homeostasis by degradation and recycling of long-lived and unwanted cellular materials. Autophagy plays important roles in pathogenicity of various fungal pathogens, suggesting that autophagy is a novel target for development of antifungal compounds. Here, we describe bioluminescence resonance energy transfer (BRET)-based high-throughput screening (HTS) strategy to identify compounds that inhibit fungal ATG4 cysteine protease-mediated cleavage of ATG8 that is critical for autophagosome formation. We identified ebselen (EB) and its analogs ebselen oxide (EO) and 2-(4-methylphenyl)-1,2-benzisothiazol-3(2H)-one (PT) as inhibitors of fungal pathogens Botrytis cinerea and Magnaporthe oryzae ATG4-mediated ATG8 processing. The EB and its analogs inhibit spore germination, hyphal development, and appressorium formation in Ascomycota pathogens, B. cinerea, M. oryzae, Sclerotinia sclerotiorum and Monilinia fructicola. Treatment with EB and its analogs significantly reduced fungal pathogenicity. Our findings provide molecular insights to develop the next generation of antifungal compounds by targeting autophagy in important fungal pathogens.


Asunto(s)
Ascomicetos , Magnaporthe , Oryza , Antifúngicos/farmacología , Antifúngicos/metabolismo , Virulencia , Autofagia , Proteínas Relacionadas con la Autofagia/metabolismo , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/microbiología , Proteínas Fúngicas/metabolismo , Esporas Fúngicas
3.
Mol Plant Microbe Interact ; 33(11): 1330-1339, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32781924

RESUMEN

In hot pepper, the sesquiterpene phytoalexin capsidiol is catalyzed by the two final-step enzymes, a sesquiterpene cyclase (EAS) and a hydroxylase (EAH), which are genetically linked and present as head-to-head orientation in the genome. Transcriptomic analysis revealed that a subset of EAS and EAH is highly induced following pathogen infection, suggesting the coregulation of EAS and EAH by a potential bidirectional activity of the promoter (pCaD). A series of the nested deletions of pCaD in both directions verified the bidirectional promoter activity of the pCaD. Promoter deletion analysis revealed that the 226 bp of the adjacent promoter region of EAS and GCC-box in EAH orientation were determined as critical regulatory elements for the induction of each gene. Based on promoter analyses, we generated a set of synthetic promoters to maximize reporter gene expression within the minimal length of the promoter in both directions. We found that the reporter gene expression was remarkably induced upon infection with Phytophthora capsici, Phytophthora infestans, and bacterial pathogen Pseudomonas syringae pv. tomato DC3000 but not with necrotrophic fungi Botrytis cinerea. Our results confirmed the bidirectional activity of the pCaD located between the head-to-head oriented phytoalexin biosynthetic genes in hot pepper. Furthermore, the synthetic promoter modified in pCaD could be a potential tool for pathogen-inducible expression of target genes for developing disease-resistant crops.[Formula: see text] Copyright © 2020 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Capsicum , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas/genética , Regiones Promotoras Genéticas , Capsicum/genética , Phytophthora/patogenicidad , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Pseudomonas syringae/patogenicidad
4.
J Vis Exp ; (135)2018 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-29889187

RESUMEN

Bacteria, one of the most important causative agents of various plant diseases, secrete a set of effector proteins into the host plant cell to subvert the plant immune system. During infection cytoplasmic effectors are delivered to the host cytosol via a type III secretion system (T3SS). After delivery into the plant cell, the effector(s) targets the specific compartment(s) to modulate host cell processes for survival and replication of the pathogen. Although there has been some research on the subcellular localization of effector proteins in the host cells to understand their function in pathogenicity by using fluorescent proteins, investigation of the dynamics of effectors directly injected from bacteria has been challenging due to the incompatibility between the T3SS and fluorescent proteins. Here, we describe our recent method of an optimized split superfolder green fluorescent protein system (sfGFPOPT) to visualize the localization of effectors delivered via the bacterial T3SS in the host cell. The sfGFP11 (11th ß-strand of sfGFP)-tagged effector secreted through the T3SS can be assembled with a specific organelle targeted sfGFP1-10OPT (1-10th ß-strand of sfGFP) leading to fluorescence emission at the site. This protocol provides a procedure to visualize the reconstituted sfGFP fluorescence signal with an effector protein from Pseudomonas syringae in a particular organelle in the Arabidopsis and Nicotiana benthamiana plants.


Asunto(s)
Arabidopsis/química , Proteínas Bacterianas/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Enfermedades de las Plantas/microbiología , Pseudomonas syringae/química
5.
Plant Cell ; 29(7): 1571-1584, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28619883

RESUMEN

Pathogenic gram-negative bacteria cause serious diseases in animals and plants. These bacterial pathogens use the type III secretion system (T3SS) to deliver effector proteins into host cells; these effectors then localize to different subcellular compartments to attenuate immune responses by altering biological processes of the host cells. The fluorescent protein (FP)-based approach to monitor effectors secreted from bacteria into the host cells is not possible because the folded FP prevents effector delivery through the T3SS Therefore, we optimized an improved variant of self-assembling split super-folder green fluorescent protein (sfGFPOPT) system to investigate the spatiotemporal dynamics of effectors delivered through bacterial T3SS into plant cells. In this system, effectors are fused to 11th ß-strand of super-folder GFP (sfGFP11), and when delivered into plant cells expressing sfGFP1-10 ß-strand (sfGFP1-10OPT), the two proteins reconstitute GFP fluorescence. We generated a number of Arabidopsis thaliana transgenic lines expressing sfGFP1-10OPT targeted to various subcellular compartments to facilitate localization of sfGFP11-tagged effectors delivered from bacteria. We demonstrate the efficacy of this system using Pseudomonas syringae effectors AvrB and AvrRps4 in Nicotiana benthamiana and transgenic Arabidopsis plants. The versatile split sfGFPOPT system described here will facilitate a better understanding of bacterial invasion strategies used to evade plant immune responses.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Imagen Molecular/métodos , Enfermedades de las Plantas/microbiología , Pseudomonas syringae/patogenicidad , Arabidopsis/genética , Arabidopsis/microbiología , Proteínas Bacterianas/genética , Proteínas Fluorescentes Verdes/análisis , Proteínas Fluorescentes Verdes/genética , Interacciones Huésped-Patógeno , Fragmentos de Péptidos/análisis , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Plantas Modificadas Genéticamente , Pliegue de Proteína , Pseudomonas syringae/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Nicotiana/genética , Nicotiana/microbiología
6.
Curr Protoc Protein Sci ; 88: 19.30.1-19.30.12, 2017 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-28369669

RESUMEN

Bioluminescence resonance energy transfer (BRET) is a technique that analyzes protein-protein interactions (PPIs). The unique feature of BRET delineates that the resonance energy is generated by the resonance energy donor, Renilla luciferase by the oxidative decarboxylation of coelenterazine substrate. BRET is superior to FRET where issues such as autofluorescence, photobleaching, and light scattering can occur. Recently, BRET has been applied to design synthetic biosensors for monitoring autophagy in vivo and in vitro. Here, we report the methods for constructing a biosensor of human HsLC3a as a probe for autophagy biogenesis and the optimization of the intramolecular BRET assay that allows for high-throughput screening of chemical modulators of autophagy. User-friendly working interface with the BRET-based synthetic sensor of HsLC3a makes drug discovery easy and amenable for high-throughput. The BRET protocol described here could be easily applicable to generate other biosensors for monitoring PPIs by measurement of intermolecular BRET. © 2017 by John Wiley & Sons, Inc.


Asunto(s)
Autofagia , Transferencia de Energía por Resonancia de Bioluminiscencia/métodos , Técnicas Biosensibles , Descubrimiento de Drogas/métodos , Luciferasas de Renilla/metabolismo , Animales , Anticuerpos , Proteínas Relacionadas con la Autofagia/metabolismo , Técnicas Biosensibles/métodos , Cisteína Endopeptidasas/metabolismo , Fluorescencia , Humanos , Imidazoles/química , Proteínas Asociadas a Microtúbulos/metabolismo , Unión Proteica/inmunología , Pirazinas/química
7.
Autophagy ; 12(11): 2054-2068, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27540766

RESUMEN

Autophagy is important for degradation and recycling of intracellular components. In a diversity of genera and species, orthologs and paralogs of the yeast Atg4 and Atg8 proteins are crucial in the biogenesis of double-membrane autophagosomes that carry the cellular cargoes to vacuoles and lysosomes. Although many plant genome sequences are available, the ATG4 and ATG8 sequence analysis is limited to some model plants. We identified 28 ATG4 and 116 ATG8 genes from the available 18 different plant genome sequences. Gene structures and protein domain sequences of ATG4 and ATG8 are conserved in plant lineages. Phylogenetic analyses classified ATG8s into 3 subgroups suggesting divergence from the common ancestor. The ATG8 expansion in plants might be attributed to whole genome duplication, segmental and dispersed duplication, and purifying selection. Our results revealed that the yeast Atg4 processes Arabidopsis ATG8 but not human LC3A (HsLC3A). In contrast, HsATG4B can process yeast and plant ATG8s in vitro but yeast and plant ATG4s cannot process HsLC3A. Interestingly, in Nicotiana benthamiana plants the yeast Atg8 is processed compared to HsLC3A. However, HsLC3A is processed when coexpressed with HsATG4B in plants. Molecular modeling indicates that lack of processing of HsLC3A by plant and yeast ATG4 is not due to lack of interaction with HsLC3A. Our in-depth analyses of ATG4 and ATG8 in the plant lineage combined with results of cross-kingdom ATG8 processing by ATG4 further support the evolutionarily conserved maturation of ATG8. Broad ATG8 processing by HsATG4B and lack of processing of HsLC3A by yeast and plant ATG4s suggest that the cross-kingdom ATG8 processing is determined by ATG8 sequence rather than ATG4.


Asunto(s)
Familia de las Proteínas 8 Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/genética , Autofagia/genética , Proteasas de Cisteína/genética , Filogenia , Procesamiento Proteico-Postraduccional/genética , Ubiquitina/genética , Secuencia de Aminoácidos , Familia de las Proteínas 8 Relacionadas con la Autofagia/química , Familia de las Proteínas 8 Relacionadas con la Autofagia/metabolismo , Proteínas Relacionadas con la Autofagia/química , Proteínas Relacionadas con la Autofagia/metabolismo , Duplicación de Gen/genética , Genes de Plantas , Humanos , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/genética , Unión Proteica , Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Ácido Nucleico , Nicotiana/metabolismo , Ubiquitina/metabolismo
8.
Autophagy ; 10(5): 926-7, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24658121

RESUMEN

Macroautophagy (hereafter autophagy) is a regulated intracellular process during which cytoplasmic cargo engulfed by double-membrane autophagosomes is delivered to the vacuole or lysosome for degradation and recycling. Atg8 that is conjugated to phosphatidylethanolamine (PE) during autophagy plays an important role not only in autophagosome biogenesis but also in cargo recruitment. Conjugation of PE to Atg8 requires processing of the C-terminal conserved glycine residue in Atg8 by the Atg4 cysteine protease. The Arabidopsis plant genome contains 9 Atg8 (AtATG8a to AtATG8i) and 2 Atg4 (AtATG4a and AtATG4b) family members. To understand AtATG4's specificity toward different AtATG8 substrates, we generated a unique synthetic substrate C-AtATG8-ShR (citrine-AtATG8-Renilla luciferase SuperhRLUC). In vitro analyses indicated that AtATG4a is catalytically more active and has broad AtATG8 substrate specificity compared with AtATG4b. Arabidopsis transgenic plants expressing the synthetic substrate C-AtAtg8a-ShR is efficiently processed by endogenous AtATG4s and targeted to the vacuole during nitrogen starvation. These results indicate that the synthetic substrate mimics endogenous AtATG8, and its processing can be monitored in vivo by a bioluminescence resonance energy transfer (BRET) assay. The synthetic Atg8 substrates provide an easy and versatile method to study plant autophagy during different biological processes.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Proteasas de Cisteína/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Autofagia/genética , Familia de las Proteínas 8 Relacionadas con la Autofagia , Proteínas Relacionadas con la Autofagia , Transferencia de Energía por Resonancia de Bioluminiscencia , Proteasas de Cisteína/genética , Luciferasas de Renilla/genética , Luciferasas de Renilla/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Modelos Moleculares , Plantas Modificadas Genéticamente , Procesamiento Proteico-Postraduccional , Especificidad por Sustrato
9.
Proc Natl Acad Sci U S A ; 111(2): 863-8, 2014 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-24379391

RESUMEN

Autophagy is a highly conserved biological process during which double membrane bound autophagosomes carry intracellular cargo material to the vacuole or lysosome for degradation and/or recycling. Autophagosome biogenesis requires Autophagy 4 (Atg4) cysteine protease-mediated processing of ubiquitin-like Atg8 proteins. Unlike single Atg4 and Atg8 genes in yeast, the Arabidopsis genome contains two Atg4 (AtAtg4a and AtAtg4b) and nine Atg8 (AtAtg8a-AtAtg8i) genes. However, we know very little about specificity of different AtAtg4s for processing of different AtAtg8s. Here, we describe a unique bioluminescence resonance energy transfer-based AtAtg8 synthetic substrate to assess AtAtg4 activity in vitro and in vivo. In addition, we developed a unique native gel assay of superhRLUC catalytic activity assay to monitor cleavage of AtAtg8s in vitro. Our results indicate that AtAtg4a is the predominant protease and that it processes AtAtg8a, AtAtg8c, AtAtg8d, and AtAtg8i better than AtAtg4b in vitro. In addition, kinetic analyses indicate that although both AtAtg4s have similar substrate affinity, AtAtg4a is more active than AtAtg4b in vitro. Activity of AtAtg4s is reversibly inhibited in vitro by reactive oxygen species such as H2O2. Our in vivo bioluminescence resonance energy transfer analyses in Arabidopsis transgenic plants indicate that the AtAtg8 synthetic substrate is efficiently processed and this is AtAtg4 dependent. These results indicate that the synthetic AtAtg8 substrate is used efficiently in the biogenesis of autophagosomes in vivo. Transgenic Arabidopsis plants expressing the AtAtg8 synthetic substrate will be a valuable tool to dissect autophagy processes and the role of autophagy during different biological processes in plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Autofagia/fisiología , Proteasas de Cisteína/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Ubiquitinas/metabolismo , Proteínas Relacionadas con la Autofagia , Immunoblotting , Mediciones Luminiscentes , Microscopía Confocal , Fagosomas/metabolismo , Plantas Modificadas Genéticamente , Especificidad por Sustrato
10.
BMC Plant Biol ; 12: 62, 2012 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-22553952

RESUMEN

BACKGROUND: Over application of phosphate fertilizers in modern agriculture contaminates waterways and disrupts natural ecosystems. Nevertheless, this is a common practice among farmers, especially in developing countries as abundant fertilizers are believed to boost crop yields. The study of plant phosphate metabolism and its underlying genetic pathways is key to discovering methods of efficient fertilizer usage. The work presented here describes a genome-wide resource on the molecular dynamics underpinning the response and recovery in roots and shoots of Arabidopsis thaliana to phosphate-starvation. RESULTS: Genome-wide profiling by micro- and tiling-arrays (accessible from GEO: GSE34004) revealed minimal overlap between root and shoot transcriptomes suggesting two independent phosphate-starvation regulons. Novel gene expression patterns were detected for over 1000 candidates and were classified as either initial, persistent, or latent responders. Comparative analysis to AtGenExpress identified cohorts of genes co-regulated across multiple stimuli. The hormone ABA displayed a dominant role in regulating many phosphate-responsive candidates. Analysis of co-regulation enabled the determination of specific versus generic members of closely related gene families with respect to phosphate-starvation. Thus, among others, we showed that PHR1-regulated members of closely related phosphate-responsive families (PHT1;1, PHT1;7-9, SPX1-3, and PHO1;H1) display greater specificity to phosphate-starvation than their more generic counterparts. CONCLUSION: Our results uncover much larger, staged responses to phosphate-starvation than previously described. To our knowledge, this work describes the most complete genome-wide data on plant nutrient stress to-date.


Asunto(s)
Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Fosfatos/deficiencia , Transcriptoma/genética , Ácido Abscísico/farmacología , Arabidopsis/efectos de los fármacos , Frío , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas/genética , Sitios Genéticos/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Especificidad de Órganos/efectos de los fármacos , Especificidad de Órganos/genética , Presión Osmótica/efectos de los fármacos , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Cloruro de Sodio/farmacología , Transcriptoma/efectos de los fármacos
11.
Plant J ; 67(2): 292-304, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21457371

RESUMEN

As important components of small RNA (smRNA) pathways, Argonaute (AGO) proteins mediate the interaction of incorporated smRNAs with their targets. Arabidopsis contains 10 AGO proteins with specialized or redundant functions. Among them, AGO1 mainly acts in microRNA (miRNA) and small-interfering RNA (siRNA) pathways for post-transcriptional gene silencing (PTGS), whereas AGO4 regulates transcriptional gene silencing (TGS) via endogenous 24-nucleotide (nt) smRNAs. To fully characterize smRNAs associated with AGO1 and AGO4, we developed a two-step protocol to purify AGO/smRNA complexes from flowers, leaves, roots and seedlings with enhanced purity, and sequenced the smRNAs by Illumina technology. Besides recovering most previously annotated smRNAs, we also identified some additional miRNAs, phased smRNA clusters and small-interfering RNAs derived from the overlapping region of natural antisense transcript pairs (NAT) (nat-siRNAs). We also identified a smRNA distribution feature on miRNA precursors which may help to identify authentic miRNAs. Organ-specific sequencing provided digital expression profiles of all obtained smRNAs, especially miRNAs. The presence and conservation of collateral miRNAs on known miRNA precursors were also investigated. Intriguingly, about 30% of AGO1-associated smRNAs were 24-nt long and unrelated to the 21-nt species. Further analysis showed that DNA-dependent RNA polymerase IV (Pol IV)-dependent smRNAs were mainly 24 nt and associated with AGO4, whereas the majority of the potential Pol V-dependent ones were 21-nt smRNAs and bound to AGO1, suggesting the potential involvement of AGO1 in Pol V-related pathways.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas Argonautas/metabolismo , ARN de Planta/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/aislamiento & purificación , Proteínas Argonautas/genética , Proteínas Argonautas/aislamiento & purificación , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Biblioteca de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Inmunoprecipitación , MicroARNs/clasificación , MicroARNs/genética , MicroARNs/aislamiento & purificación , Anotación de Secuencia Molecular , Interferencia de ARN , ARN de Planta/aislamiento & purificación
12.
PLoS One ; 6(2): e16403, 2011 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-21346806

RESUMEN

MicroRNAs (miRNAs) are key regulators of gene expression and contribute to a variety of biological processes. Abnormal miRNA expression has been reported in various diseases including pathophysiology of breast cancer, where they regulate protumorigenic processes including vascular invasiveness, estrogen receptor status, chemotherapy resistance, invasion and metastasis. The miRBase sequence database, a public repository for newly discovered miRNAs, has grown rapidly with approximately >10,000 entries to date. Despite this rapid growth, many miRNAs have not yet been validated, and several others are yet to be identified. A lack of a full complement of miRNAs has imposed limitations on recognizing their important roles in cancer, including breast cancer. Using deep sequencing technology, we have identified 189 candidate novel microRNAs in human breast cancer cell lines with diverse tumorigenic potential. We further show that analysis of 500-nucleotide pri-microRNA secondary structure constitutes a reliable method to predict bona fide miRNAs as judged by experimental validation. Candidate novel breast cancer miRNAs with stem lengths of greater than 30 bp resulted in the generation of precursor and mature sequences in vivo. On the other hand, candidates with stem length less than 30 bp were less efficient in producing mature miRNA. This approach may be used to predict which candidate novel miRNA would qualify as bona fide miRNAs from deep sequencing data with approximately 90% accuracy.


Asunto(s)
Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , MicroARNs/química , MicroARNs/genética , Conformación de Ácido Nucleico , Análisis de Secuencia de ARN/métodos , Secuencia de Bases , Línea Celular Tumoral , Biología Computacional , Femenino , Humanos , Reproducibilidad de los Resultados
13.
Plant Methods ; 4: 23, 2008 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-18826616

RESUMEN

Renilla luciferase (RLUC) is a popular reporter enzyme for gene expression and biosensor applications, but it is an unstable enzyme whose catalytic mechanism remains to be elucidated. We titrated that one RLUC molecule can turn over about one hundred molecules of coelenterazine substrate. Mutagenesis of active site residue Pro220 extended the half-life of photon emission, yielding brighter luminescence in E. coli. Random mutagenesis uncovered two new mutations that stabilized and increased photon emission in vivo and in vitro, while ameliorating substrate inhibition. Further amended with a previously identified mutation, a new triple mutant showed a threefold improved kcat, as well as elevated luminescence in Arabidopsis. This advances the utility of RLUC as a reporter protein, biosensor, or resonance energy donor.

14.
Protein Sci ; 17(4): 725-35, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18359861

RESUMEN

Renilla luciferase (RLUC) is a versatile tool for gene expression assays and in vivo biosensor applications, but its catalytic mechanism remains to be elucidated. RLUC is evolutionarily related to the alpha/beta hydrolase family. Its closest known homologs are bacterial dehalogenases, raising the question of how a protein with a hydrolase fold can function as a decarboxylating oxygenase. Molecular docking simulations with the coelenterazine substrate against an RLUC homology model as well as a recently determined RLUC crystal structure were used to build hypotheses to identify functionally important residues, which were subsequently tested by site-directed mutagenesis, heterologous expression, and bioluminescence emission spectroscopy. The data highlighted two triads of residues that are critical for catalysis. The putative catalytic triad residues D120, E144, and H285 bear only limited resemblance to those found in the active site of aequorin, a coelenterazine-utilizing photoprotein, suggesting that the reaction scheme employed by RLUC differs substantially from the one established for aequorin. The role of H285 in catalysis was further supported by inhibition using diethylpyrocarbonate. Multiple substitutions of N53, W121, and P220--three other residues implicated in product binding in the homologous dehalogenase Sphingomonas LinB--also supported their involvement in catalysis. Together with luminescence spectra, our data lead us to propose that the conserved catalytic triad of RLUC is directly involved in the decarboxylation reaction of coelenterazine to produce bioluminescence, while the other active-site residues are used for binding of the substrate.


Asunto(s)
Imidazoles/metabolismo , Luciferasas de Renilla/química , Pirazinas/metabolismo , Aequorina/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Catálisis , Simulación por Computador , Dietil Pirocarbonato/farmacología , Isoxazoles/farmacología , Luciferasas de Renilla/antagonistas & inhibidores , Luciferasas de Renilla/genética , Mediciones Luminiscentes , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Fluoruro de Fenilmetilsulfonilo/farmacología , Relación Estructura-Actividad
15.
Plant J ; 48(1): 138-52, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16925598

RESUMEN

Bioluminescence resonance energy transfer (BRET) is a natural biophysical phenomenon that underlies an emerging technique to monitor protein-protein interactions in living cells in real time. Here, we present a series of technical advances to enhance the utility of the BRET assay in plants. A series of recombination cloning vectors was generated to accelerate the expression of proteins tagged with Renilla luciferase or yellow fluorescent protein under transient assay conditions and in stable transgenic plants. Working in stably transformed Arabidopsis or tobacco, we then detected BRET between three pairs of candidate interaction partners: dimerization of the E3 ubiquitin ligase COP1, interaction between COP1 and the B-box protein STH, and interaction between the light regulatory bZip transcription factors HY5 and HYH. A codon-optimized version of the Renilla luciferase gene resulted in improved expression in Arabidopsis. Renilla luciferase was active in a variety of subcellular organelles, including plastids, mitochondria, peroxisomes and Golgi stacks. In a survey of the Arabidopsis light signaling machinery as a model system, we estimated the likelihood that a known protein-protein interaction can be documented using BRET. Finally, we show that Renilla luciferase may serve as a reporter of protein stability in a cycloheximide chase assay.


Asunto(s)
Mediciones Luminiscentes/métodos , Proteínas de Plantas/análisis , Mapeo de Interacción de Proteínas/métodos , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/ultraestructura , Proteínas de Arabidopsis/análisis , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/análisis , Proteínas Portadoras/análisis , Proteínas de Unión al ADN , Genes Reporteros , Luz , Luciferasas/análisis , Proteínas Nucleares/análisis , Proteínas Recombinantes de Fusión/análisis , Transducción de Señal , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/ultraestructura , Ubiquitina-Proteína Ligasas/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...