Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 515
Filtrar
1.
Med Mycol ; 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39104225

RESUMEN

Epizootic lymphangitis (EL) is a highly prevalent and contagious infectious disease affecting horses in many parts of Ethiopia caused by Histoplasma capsulatum sensu lato ('var. farciminosum'). In this study, 12 suspected isolates of H. capsulatum sensu lato or yeasts unidentified by conventional biochemical tests isolated from Ethiopian horses with EL were characterised by ITS sequencing. Six of the 12 isolates were identified to be members of H. capsulatum sensu lato and the other six were Pichia kudriavzevii (synonym: Candida krusei) (n = 3), Trichosporon asahii (n = 1), Geotrichum silvicola (n = 1) and Moesziomyces aphidis (n = 1), respectively. The six H. capsulatum sensu lato isolates were further characterised by multilocus sequence analysis. Four distinct gene loci [arf (462 bases), H-anti (410 bases), ole1 (338 bases) and tub1 (272 bases)] of these six isolates as well as those of two H. capsulatum sensu lato ('var. farciminosum') reference strains (ATCC 58332 and ATCC 28798) were PCR-amplified and sequenced. Phylogenetic analyses of their concatenated nucleotide sequences showed that three of the isolates and the reference strain ATCC 58332 were identical and belonged to the Eurasia clade within Latin American (LAm) A (H. suramericanum), and those of the other three isolates and the reference strain ATCC 28798 were identical and belonged to the Africa clade. At least two distinct phylogenetic clades of Histoplasma capsulatum sensu lato were circulating in Ethiopian horses with EL. Advanced molecular technologies and bioinformatics tools are crucial for accurate identification and typing of pathogens as well as discovery of novel microorganisms in veterinary microbiology.


Using multilocus sequence analysis with four concatenated housekeeping gene loci, at least two distinct phylogenetic clades, namely Eurasia clade and Africa clade, of Histoplasma capsulatum sensu lato were confirmed to be circulating in Ethiopian horses with epizootic lymphangitis.

2.
Emerg Microbes Infect ; 13(1): 2373317, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38934251

RESUMEN

Tsukamurella, a group of multi-drug resistant, Gram-positive, aerobic, and partially acid-fast bacteria, are emerging causes of bacterial conjunctivitis and keratitis. However, the pathogenesis of Tsukamurella keratitis is largely unknown. To address this, we used New Zealand White rabbits to develop the first eye infection model and conducted in vitro tests to study the pathogenesis mechanisms of Tsukamurella. There is increasing evidence that biofilms play a significant role in ocular infections, leading us to hypothesize that biofilm formation is crucial for effective Tsukamurella infection. In order to look for potential candidate genes which are important in biofilm formation and Tsukamurella keratitis. We performed genome sequencing of two ocular isolates, T. pulmonis-PW1004 and T. tyrosinosolvens-PW899, to identify potential virulence factors. Through in vitro and in vivo studies, we characterized their biological roles in mediating Tsukamurella keratitis. Our findings confirmed that Tsukamurella is an ocular pathogen by fulfilling Koch's postulates, and using genome sequence data, we identified tmytC, encoding a mycolyltransferase, as a crucial gene in biofilm formation and causing Tsukamurella keratitis in the rabbit model. This is the first report demonstrating the novel role of mycolyltransferase in causing ocular infections. Overall, our findings contribute to a better understanding of Tsukamurella pathogenesis and provide a potential target for treatment. Specific inhibitors targeting TmytC could serve as an effective treatment option for Tsukamurella infections.


Asunto(s)
Biopelículas , Modelos Animales de Enfermedad , Queratitis , Biopelículas/crecimiento & desarrollo , Animales , Conejos , Queratitis/microbiología , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Infecciones por Actinomycetales/microbiología , Infecciones por Actinomycetales/veterinaria , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Secuenciación Completa del Genoma , Infecciones Bacterianas del Ojo/microbiología , Genoma Bacteriano , Humanos
3.
Mycopathologia ; 189(3): 38, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38704795

RESUMEN

OBJECTIVES: To describe the epidemiology of Pneumocystis jirovecii pneumonia and colonization diagnosed by next-generation sequencing (NGS) and explore the usefulness of the number of P. jirovecii sequence reads for the diagnosis of P. jirovecii pneumonia. METHODS: We examined the NGS results for P. jirovecii in respiratory samples collected from patients and analysed their clinical, radiological and microbiological characteristics. RESULTS: Among 285 respiratory samples collected over a 12-month period (January to December 2022), P. jirovecii sequences were detected in 56 samples from 53 patients. Fifty (94.3%) of the 53 patients were HIV-negative. Following our case definitions, 37 (69.8%) and 16 (30.2%) of the 53 patients had P. jirovecii infection and colonization respectively. P. jirovecii infection was associated with presence of underlying disease with immunosuppression (94.6% vs 18.8%, P < 0.05), positive serum 1,3-ß-D-glucan (41.2% vs 0%, P < 0.01) and higher number of P. jirovecii sequence reads (P < 0.005). In contrast, P. jirovecii colonization was associated with the male sex (93.8% vs 54.1%, P < 0.01), another definitive infectious disease diagnosis of the respiratory tract (43.8% vs 2.7%, P < 0.001) and higher survival (100% vs 67.6%, P < 0.01). Although P. jirovecii pneumonia was associated with higher number of P. jirovecii reads in respiratory samples, only a sensitivity of 82.14% and a specificity of 68.75% could be achieved. CONCLUSION: Detection of P. jirovecii sequences in respiratory samples has to be interpreted discreetly. A combination of clinical, radiological and laboratory findings is still the most crucial in determining whether a particular case is genuine P. jirovecii pneumonia.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Pneumocystis carinii , Neumonía por Pneumocystis , Humanos , Neumonía por Pneumocystis/diagnóstico , Neumonía por Pneumocystis/microbiología , Masculino , Pneumocystis carinii/genética , Pneumocystis carinii/aislamiento & purificación , Femenino , Persona de Mediana Edad , Anciano , Adulto , Anciano de 80 o más Años , Sistema Respiratorio/microbiología , Adulto Joven , Técnicas de Diagnóstico Molecular/métodos
4.
Viruses ; 15(12)2023 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-38140583

RESUMEN

Irrespective of whether COVID-19 originated from a natural or a genetically engineered virus, the ultimate source of Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) is bats [...].


Asunto(s)
COVID-19 , Quirópteros , Coronavirus del Síndrome Respiratorio de Oriente Medio , Animales , Humanos , SARS-CoV-2/genética , Coronavirus del Síndrome Respiratorio de Oriente Medio/genética
6.
Microbiol Spectr ; 11(6): e0259123, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37971222

RESUMEN

IMPORTANCE: We report the application of a colorimetric and fluorescent reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay to facilitate mass screening for sarbecoviruses in bats. The assay was evaluated using a total of 838 oral and alimentary samples from bats and demonstrated comparable sensitivity and specificity to quantitative reverse transcription PCR (qRT-PCR), with a simple setup. The addition of SYTO9, a fluorescent nucleic acid stain, also allows for quantitative analysis. The scalability and simplicity of the assay are believed to contribute to improving preparedness for detecting emerging coronaviruses by applying it to field studies and surveillance.


Asunto(s)
Quirópteros , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo , Animales , Quirópteros/virología , Técnicas de Diagnóstico Molecular , Técnicas de Amplificación de Ácido Nucleico , Transcripción Reversa
7.
Int J Antimicrob Agents ; 62(6): 107014, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37866472

RESUMEN

Antimicrobial resistance (AMR) is a major global public health threat, particularly affecting patients in resource-poor settings. Comprehensive surveillance programmes are essential to reducing the high mortality and morbidity associated with AMR and are integral to informing treatment decisions and guidelines, appraising the effectiveness of intervention strategies, and directing development of new antibacterial agents. Various surveillance programmes exist worldwide, including those administered by government bodies or funded by the pharmaceutical industry. One of the largest and longest running industry-sponsored AMR surveillance programme is the Study for Monitoring Antimicrobial Resistance Trends (SMART), which recently completed its 20th year. The SMART database has grown to almost 500 000 isolates from over 200 sites in more than 60 countries, encompassing all major geographic regions and including many sites in low- and middle-income countries. The SMART surveillance programme has evolved in scope over time, including additional antibacterial agents, pathogens and infection sites, in line with changing epidemiology and medical need. Surveillance data from SMART and similar programmes have been used successfully to detect emerging resistance threats and AMR patterns in specific countries and regions, thus informing national and local clinical treatment guidelines. The SMART database can be accessed readily by physicians and researchers globally, which may be especially valuable to those from countries with limited healthcare resources, where surveillance and resistance data are rarely collected. Continued participation from as many sites as possible worldwide and maintenance of adequate funding are critical factors to fully realising the potential of large-scale AMR surveillance programmes into the future.


Asunto(s)
Antibacterianos , Farmacorresistencia Bacteriana , Humanos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico
8.
mSphere ; 8(5): e0025822, 2023 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-37695039

RESUMEN

Talaromyces marneffei is a thermally dimorphic fungal pathogen endemic in Southeast Asia. As inhalation of airborne conidia is believed as the major infection route, airway epithelial cells followed by pulmonary macrophages are the first cell types which the fungus encounters inside the host. In this study, we established an in vitro infection model based on human peripheral blood-derived macrophages (hPBDMs) cultured with the supplementation of autologous plasma. Using this model, we determined the transcriptomic changes of hPBDMs in response to T. marneffei infection by quantitative real-time reverse-transcription polymerase chain reaction as well as high-throughput RNA sequencing. Results showed that T. marneffei infection could activate hPBDMs to the M1-like phenotype and trigger a potent induction of chemokine and pro-inflammatory cytokine production as well as the expression of other immunoregulatory genes. In contrast to hPBDMs, there was no detectable innate cytokine response against T. marneffei in human bronchial epithelial cells (hBECs). Using a green fluorescent protein-tagged T. marneffei strain and confocal microscopy, internalization of the fungus by hBECs was confirmed. Live cell imaging further demonstrated that the infected cells exhibited normal cellular physiology, especially that the process of cell division could be observed. Moreover, T. marneffei also survived better inside hBECs than hPBDMs. Our results illustrated a potential role of hBECs to serve as reservoir cells for T. marneffei to evade immunosurveillance by phagocytes, from which the fungus reactivates when the host immunity is weakened and causes infection. Such immunoevasion and reactivation may also help explain the long incubation period observed for talaromycosis, in particular the travel-related cases. IMPORTANCE Talaromyces marneffei is an important fungal pathogen especially in Southeast Asia. To understand the innate immune response to talaromycosis, a suitable infection model is needed. Here, we established an in vitro T. marneffei infection model using human peripheral blood-derived macrophages (hPBDMs). We then examined the transcriptomic changes of hPBDMs in response to T. marneffei infection with this model. We found that contact with T. marneffei could activate hPBDMs to the M1-like phenotype and induced mRNA expressions of five cytokines and eight immunoregulatory genes. Contrary to hPBDMs, such immunoresponse was not elicited in human bronchial epithelial cells (hBECs), despite normal physiology observed in infected cells. We also found that infected hBECs did not eliminate T. marneffei as efficiently as hPBDMs. Our observation suggested that hBECs may potentially serve as reservoir cells for T. marneffei to evade immunosurveillance. When the host immunity deteriorates later, then the fungus reactivates and causes infection.


Asunto(s)
Enfermedad Relacionada con los Viajes , Viaje , Humanos , Macrófagos/microbiología , Inmunidad Innata , Citocinas/metabolismo , Células Epiteliales/metabolismo
9.
Pathogens ; 12(8)2023 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-37623955

RESUMEN

Adult camel leukosis is an emerging hematological and neoplastic disease in dromedaries. It has been hypothesized that bovine leukemia virus (BLV) or its genetic variants may be associated with adult camel leukosis. In this study, we used next-generation sequencing (NGS) to detect all possible viruses in five lung samples from five dromedaries with histopathological evidence of adult camel leukosis and four tissue samples from two control dromedaries. A total throughput of 114.7 Gb was achieved, with an average of 12.7 Gb/sample. For each sample, all the pair-end 151-bp reads were filtered to remove rRNA sequences, bacterial genomes and redundant sequences, resulting in 1-7 Gb clean reads, of which <3% matched to viruses. The largest portion of these viral sequences was composed of bacterial phages. About 100-300 reads in each sample matched "multiple sclerosis-associated retrovirus", but manual analysis showed that they were only repetitive sequences commonly present in mammalian genomes. All viral reads were also extracted for analysis, confirming that no BLV or its genetic variants or any other virus was detected in the nine tissue samples. NGS is not only useful for detecting microorganisms associated with infectious diseases, but also important for excluding an infective cause in scenarios where such a possibility is suspected.

11.
Front Med (Lausanne) ; 10: 1226126, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37534314

RESUMEN

Nocardia species do not replicate as rapidly as other pyogenic bacteria and nocardial infections can be highly fatal, particularly in immunocompromised patients. Here, we present the first report of fatal Nocardia kroppenstedtii bacteremic pneumonia and empyema thoracis diagnosed by next-generation sequencing (NGS) using the Oxford Nanopore Technologies' MinION device. The bacterium was not identified by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Due to its low equipment cost, short turn-around-time, and portable size, the Oxford Nanopore Technologies' MinION device is a useful platform for NGS in routine clinical microbiology laboratories.

12.
J Gen Virol ; 104(4)2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37097842

RESUMEN

The family Coronaviridae includes viruses with positive-sense RNA genomes of 22-36 kb that are expressed through a nested set of 3' co-terminal subgenomic mRNAs. Members of the subfamily Orthocoronavirinae are characterized by 80-160 nm diameter, enveloped virions with spike projections. The orthocoronaviruses, severe acute respiratory syndrome coronavirus and Middle East respiratory syndrome-related coronavirus are extremely pathogenic for humans and in the last two decades have been responsible for the SARS and MERS epidemics. Another orthocoronavirus, severe acute respiratory syndrome coronavirus 2, was responsible for the recent global COVID-19 pandemic. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Coronaviridae which is available at www.ictv.global/report/coronaviridae.


Asunto(s)
Coronaviridae , Humanos , Coronaviridae/genética , Genoma Viral , Pandemias , Virión/genética , Replicación Viral , ARN Subgenómico/genética
13.
J Glob Antimicrob Resist ; 33: 260-266, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37086892

RESUMEN

OBJECTIVES: The aim of this study was to estimate carbapenem resistance in Pseudomonas aeruginosa and Enterobacterales isolated from infected patients in intensive care unit (ICU) and non-ICU hospital wards in Hong Kong. METHODS: Isolates of Pseudomonas aeruginosa (ICU, n = 35; non-ICU, n = 264) and Enterobacterales (ICU, n = 129; non-ICU, n = 1390) were collected in four Hong Kong hospitals in 2017-2020. Clinical and Laboratory Standards Institute broth microdilution minimum inhibitory concentrations (MICs) were interpreted according to Clinical and Laboratory Standards Institute 2021 M100 breakpoints. ß-lactamase genes were identified in imipenem-, imipenem/relebactam-, and ceftolozane/tazobactam-nonsusceptible isolates. RESULTS: Ceftolozane/tazobactam demonstrated potent in vitro activity against both P. aeruginosa (ICU, 88.6%; non-ICU, 98.5%) and Enterobacterales (96.1%; 97.1%). Percent susceptible values for P. aeruginosa isolates from ICU and non-ICU patients, respectively, were as follows: meropenem (ICU, 74.3%; non-ICU, 84.1%) and imipenem (68.6%; 73.1%). Only 1 of 77 isolates tested for ß-lactamase genes carried a carbapenemase (VIM-2). Percent susceptible values for Enterobacterales isolates from ICU and non-ICU patients were as follows: meropenem (100%; 99.4%), ertapenem (100%; 98.0%), and imipenem (88.4%; 88.6%). A total of 62 Enterobacterales isolates were tested for ß-lactamase genes. Only three isolates carried a carbapenemase gene; two (both Escherichia coli) were metallo-ß-lactamase-positive (both NDM-5), and one (Klebsiella pneumoniae) was OXA-48-like-positive. CONCLUSIONS: Carbapenem-nonsusceptible isolates of P. aeruginosa were common (>15% of isolates). P. aeruginosa percent susceptible values for ceftolozane/tazobactam (97.3% susceptible overall) were ≥14% higher than those for carbapenems in both ICU and non-ICU isolates. Carbapenemases were rare among both P. aeruginosa (one isolate) and Enterobacterales (three isolates). Most Enterobacterales isolates tested from ICU and non-ICU patients in Hong Kong hospitals in 2017-2020 were susceptible to meropenem and ertapenem (≥98%); imipenem was less active (89% susceptible).


Asunto(s)
Antibacterianos , Imipenem , Humanos , Meropenem , Ertapenem , Hong Kong , Antibacterianos/farmacología , Imipenem/farmacología , Tazobactam , Carbapenémicos/farmacología , beta-Lactamasas/genética , Pseudomonas aeruginosa/genética , Escherichia coli , Unidades de Cuidados Intensivos
14.
Comput Struct Biotechnol J ; 21: 1283-1291, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36814720

RESUMEN

In this study, we investigated the change in microbiome composition of wild Sichuan takin (Budorcas tibetanus) during winter and spring and analyzed the physiological implications for such changes. Diversity analyses of the microbiome (average 15,091 high-quality reads per sample) in 24 fecal samples (15 from winter, 9 from spring) revealed that spring samples had higher species diversity and were compositionally different from winter samples (P < 0.05). Taxonomic composition analysis showed that the relative abundance increased in spring for Patescibacteria (2.7% vs. 0.9% in winter, P < 0.001) and Tenericutes (1.9% vs. 1% in winter, P < 0.05). Substantial increases in relative abundance of Ruminococcaceae and Micrococcaceae were identified in spring and winter, respectively. Mann-Whitney U and ANCOM identified seven differentially abundant genera: Enterococcus, Acetitomaculum, Blautia, Coprococcus 1, Lachnospiraceae UCG 008, Ruminococcus 2 and Ralstonia. All seven genera were significantly more abundant in spring (average 0.016-1.2%) than winter (average 0-0.16%), with the largest difference found in Ruminococcus (1.21% in spring vs. 0.16% in winter). The other six genera were undetectable in winter. Functional prediction and pathway analysis revealed that biosynthesis of cofactors (ko01240) had the highest gene count ratios in the winter, followed by the two-component system (ko02020). Seasonal variation affects the gut microbiomes in wild Sichuan takins, with winter associated with lower species diversity and spring with enrichment of cellulose-degrading genera and phytopathogens. Such changes were crucial in their adaptation to the environment, particularly the difference in food abundance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...